How to Integrate your Production and Logistics Strategy for a CPG Company A NEW FORMULATION

Production Planning with Complex Cost Drivers

Agenda

- 1. Overview of Problem
- 2. Overview of Model
- 3. Benchmarking
- 4. Sensitivity Analysis
- 5. Key Takeaways
- 6. Further Research Areas

Key Messages

- 1. Manual planning processes are **time consuming** and **cannot** consider all **cost drivers**.
- 2. Implementation of lot sizing problems requires the **right formulation** that fits the business environment.
- 3. Production lot sizing optimization is not always a trade-off between **setups** and **inventory**.

Overview of Problem

Is this caused by the lot sizing decision?

Model Overview Selection

- Seasonality
 - Deterministic Demand
- Capacitated
- Multiple Lines
- Multiple Items
- Plant and 3PL Storage

Capacitated Lot Sizing Problem (CLSP) with new extensions

Model Overview New Extensions

- Double Echelon Setups Costs
 Product families with shared setups
- Double Echelon Inventory Costs
 Plant and 3PL Warehouses
- > 3PL Transport and Handling Cost
- Beginning and Ending Inventory Positions

Costing Methodology

Setups Costs

• Opportunity cost of not producing product while the machine is down for setups

Holding Costs

Rent, Labor, Tax, Insurance → Annual cost per footprint → Weekly cost per bottle

Transfer Cost

- Freight Cost (\$ per TL)
- Handling Cost (\$ per pallet) \rightarrow Handling Cost (\$ per TL)
- Estimated Transfer Size (TLs per week)

Model Overview Comparison

Basic CLSP

Thesis Model

Basic CI	LSP	VS	Model
$X_{it} + I_{i,t-1} - I_{it} = d_{it}$	$\forall i,t$	Inventory	$d_{i,t} = X_{i,t} + (I_{i,t-1} + W_{i,t-1}) - (I_{it} + W_{it}) \forall i, t$
NA		Plant Storage Capacity	$\sum_{i=1}^{n} I_{it} \le R_{2t} \forall t$
NA		Transfer Event Binary	$\sum_{i=1}^{n} [W_{it} - W_{i,t-1}] \le M \cdot H_{it} \forall t$
NA		Setup Level 1 Binary	$\sum_{Nj-1}^{Nj} Y_{ijt} \leq M \cdot Z_{ljt} \forall l, j, t$
NA		Setup Level 2 Binary	$\sum_{i=1}^{n} X_{ijt} \le M \cdot Y_{ijt} \forall t$
NA	ľ	Machine Capability Binary	$\sum_{i=1}^{n} X_{ijt} \le M \cdot C_{ij} \forall i, j, t$

Process Flow

Inputs:

Weekly Demand Forecast per item ٠

Minimize

- Plant Capacities (MSA) ٠
- Setup Costs/Times •
- **Inventory Costs** ٠
- Line Capabilities ٠

Outputs:

- Lot Size Plan
- Inventory
- Setups ٠

Regional Benchmark Scenario Selection Rationale

Strength - Represents network complexity

- Assets 3 plants, 12 lines, 1 3PL Warehouse
 - Lines have varying capacity and capabilities

3,504 DECISION VARIABLES

- Products 5 bottle sizes, 14 bottle-pack categories
 - Represents both core and non-core products

Regional Benchmark Demand

Regional Benchmark Production

Regional Benchmark Inventory

Regional Benchmark

Weakness : Actual Production Data doesn't match Demand Data

- Actual Production data produces 17% more bottles than forecast data requires
 - Dynamic Sourcing?
- Actual Production data is not a good benchmark for a planning comparison
- Need alternative benchmarking data

Manual Plan Benchmark Scenario Selection Rationale

- Simplified Data set
- 1 Plant
- 3 Lines
- 4 Products : 2 fast movers, 2 slow movers

Scenario Features

• Build Period – Full Capacity and significant inventory build target

Manual Benchmark Production

Weekly Production Quantity 120% Capacity 110% 100% Production 90% 80% 70% % 60% 18 22 14 15 16 17 19 20 21 Week Number

Both plans have similar overall production

Manual Benchmark Inventory

Manual Benchmark Inventory

Performance Benchmark Manual Planning Method

Performance Benchmark Model Planning Results

Performance Benchmark Manual Planning Method vs Model Plan

Cost Comparison - Manual vs. Model

Sensitivity Analysis Rationale

Regional Benchmark Dataset

- Burn period offers best scenario for sensitivity analysis
 - Spare Production Capacity
 - Increasing setup costs should increase lot sizes \rightarrow need spare capacity to see this
 - Spare Inventory Capacity
 - Increased lot sizes should add inventory

Sensitivity Analysis Production & Inventory

Sensitivity Analysis Production & Inventory

Sensitivity Analysis Setups

Base - 4xSetup - 4xHolding

Sensitivity Analysis Conclusions

		4xSetup		4xHolding	
	Base	Value	Change	Value	Change
Setups (Qty)	68	64	-6%	72	<mark>6%</mark>
Plant Inventory (Utilization)	3.4%	9.4%	174%	1.5%	-57%

Change in Setups

 +/- 6% change in setups for +/-4x change in relative setup to holding cost value shows robustness

Change in Inventory

• Plant warehouse utilization only increased to 9.4% with a 4x increase in setup cost

Key Takeaways

Improve Plant Warehouse Utilization

Reduce Transfer Events to the 3PL

Plan on Multi-Dimensions

Utilize Flexibility of all Lines

Further Research Areas

• Three Echelon Formulation for Bottle-Packsize-Label

• Backordering and Safety Stock features

• Transportation Cost

• Uncertain Demand/Capacity

Thank You

Performance Benchmark How Do you Reduce Setups and Inventory?

- Manual Plan uses average
 - carries extra inventory throughout when you have inventory build target
- Model Plan uses inventory early and builds to inventory target later
 - Uses extra capacity to build slow mover inventory to reduce setups
 - Slow mover inventory build is less than inventory reduction on fast movers