

Image Source: Hamburg P

.....

Analysis of Inefficiencies in Shipment Data Handling

Table of Content

01 Background and Objectives

Ļ

02 Thesis Methodology

03

Results and Discussion

Limitations and Future Roadmap

2

Background and Objectives

The Sponsor

Our sponsor company is one of the world's leading providers of freight forwarding and supply chain management services.

For more than 100 years, they have been providing their customers with transportation and logistics solutions that support the way they want to do business, wherever they are in the world.

Their Global footprint and market leadership in several geographies enables them to offer their customers- new sourcing areas, customers and business opportunities with their established network

Their customer base (for this thesis scope) is split into SCM customers and Freight forwarding customers.

The Problem | Errors in Shipment Milestone Tracking

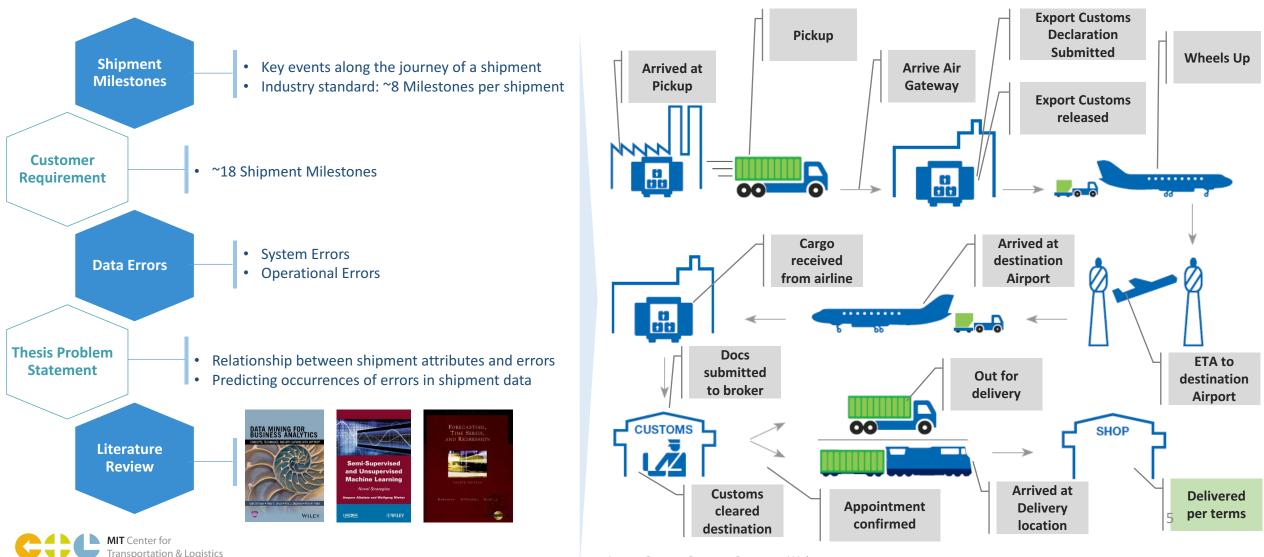


Image Source: Sponsor Company Webcontent

Thesis Methodology

Data Collection

Data Exploration

Design and Build

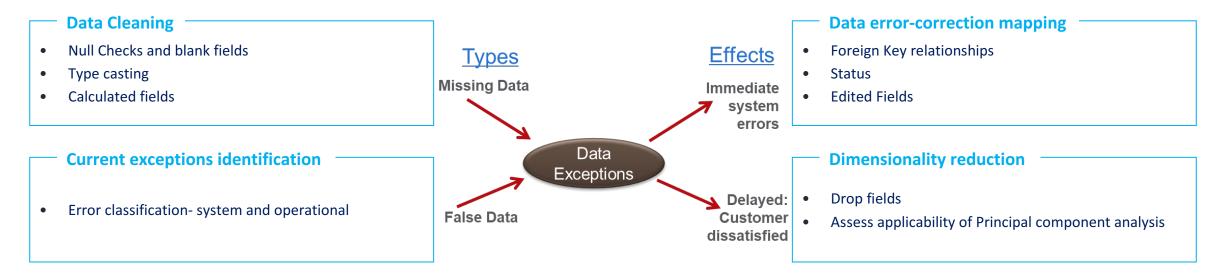
Model Validation

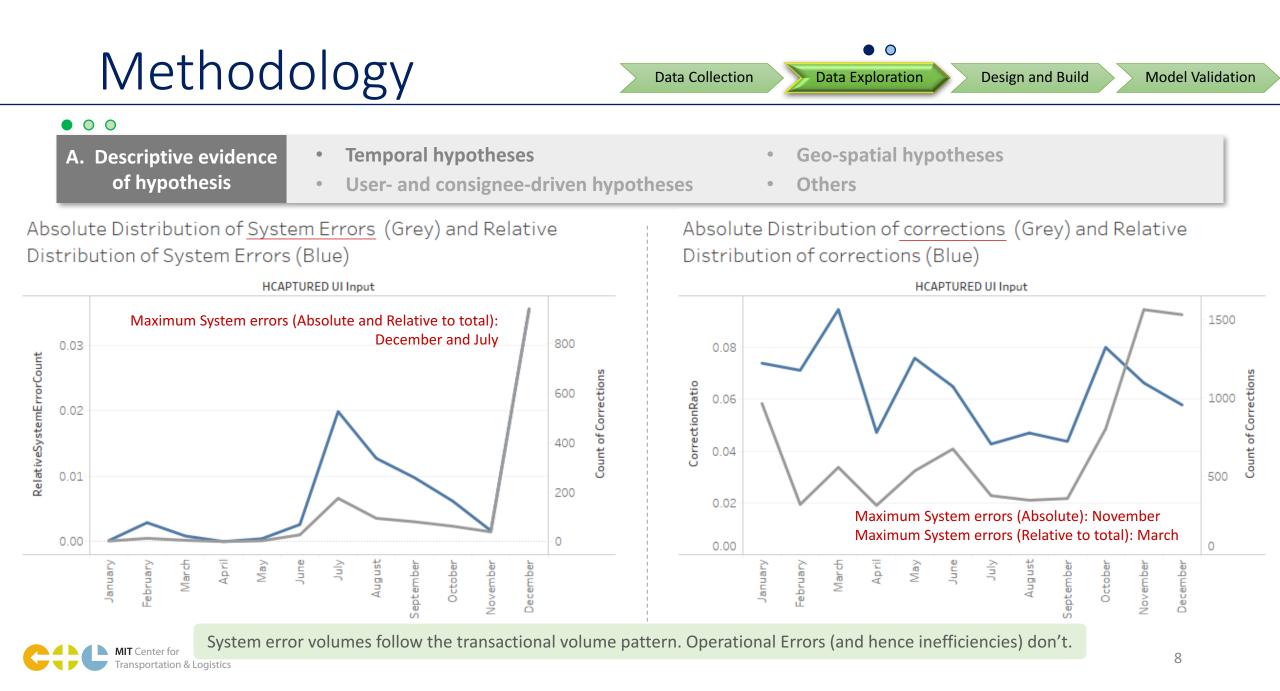
Image Source: <u>Express World</u>

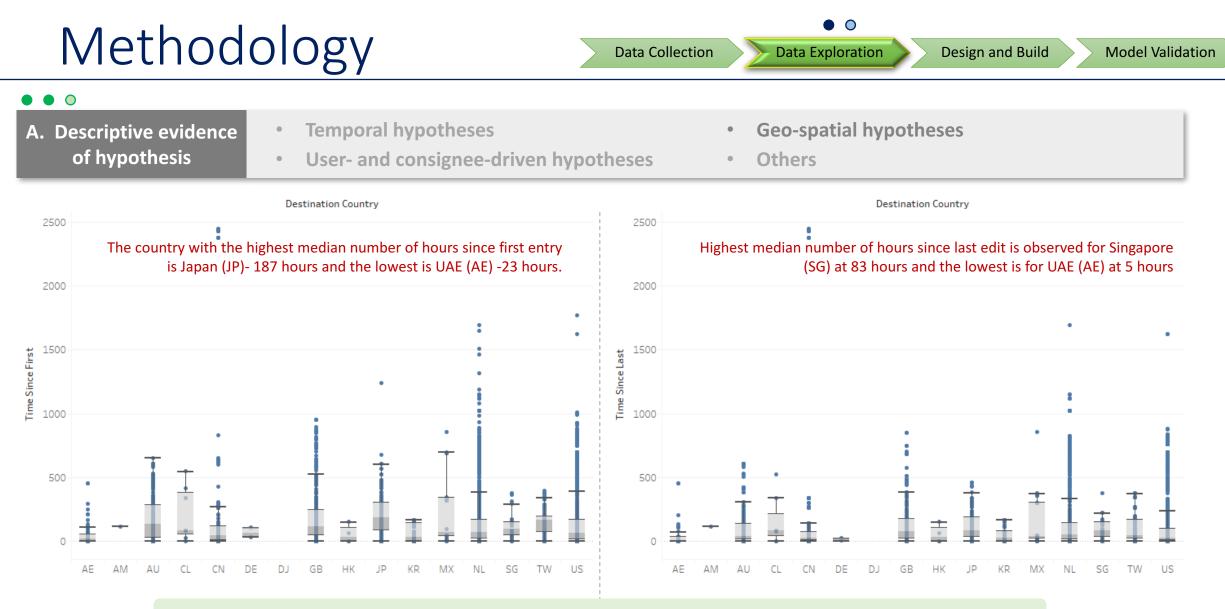
Methodology

Data Collection

Data Sources	•	Transactional Data from Legacy system System Logs	•	De-normalized Data structure Data types
Data Preparation	•	Data Cleaning Current exceptions identification	•	Data error-correction mapping Dimensionality reduction







Errors are addressed and corrected at different rates for shipments destined for different countries.

MIT Center for Transportation & Logistics

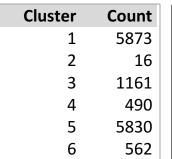
Methodology	Data Collection	Data Exploration D	esign and Build Model Validation
 A. Descriptive evidence of hypothesis Temporal hypotheses User- and consignee-driven 	• hypotheses •	Geo-spatial hypothese Others	S
Update Entries per Shipment- color is Relative #Eo updates	dits, Size Total no of	"Initial Entry": Exactly one entry corresponding to the status "Initial entry" for each unique waybill- milestone pair.	"Correction": Several dark spots capturing shipments where the same event is corrected five to six times
	 Darker Color: Higher ratio of Transactions/Unique Shipment Milestone Larger radius: Greater number of transactions All waybills in the entire dataset. Problem: Small dark blue dots 	"Redundant": Few dark spots capturing shipments where the same event is corrected five to six times	"Update": Several dark blue points with the same event updated for the same shipment up to 5 or 6 times. Not a problem.

For the 'Correction' and 'Redundant', number of corrections concentrated around a few shipments

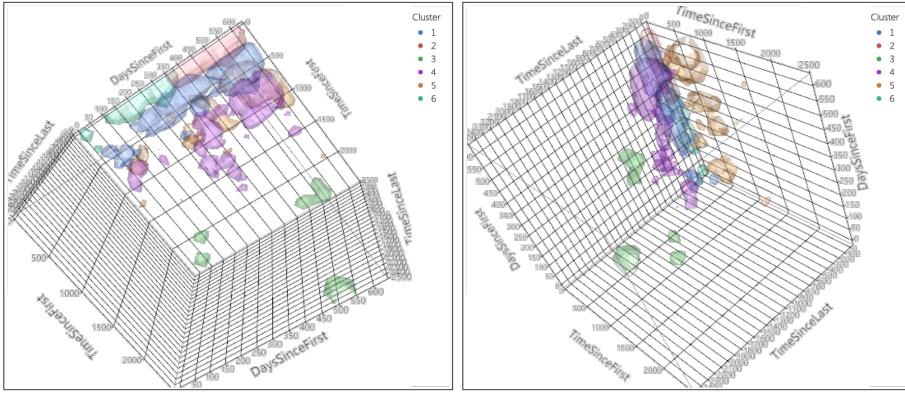
Methodology

- B. Classification using K- Means
 K: 6 Clusters
 Y: TimeSinceFirst, TimeSinceLast, DaysSinceFirst
 Lim
 - Similarity : Distance between points.

- Better suited for use with larger data tables
- Limitation: Only supports numeric columns

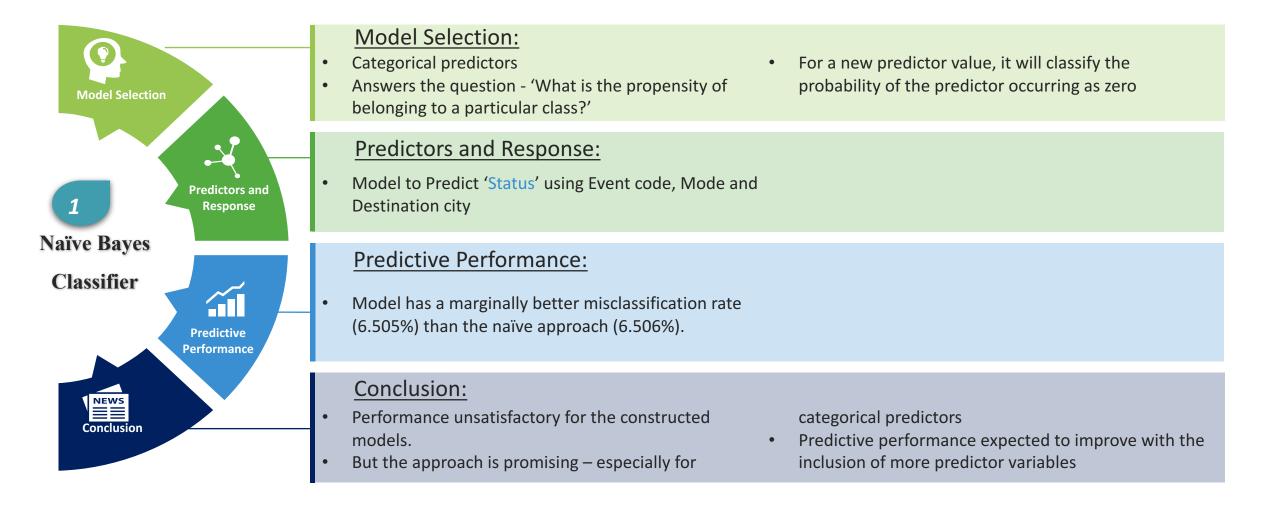


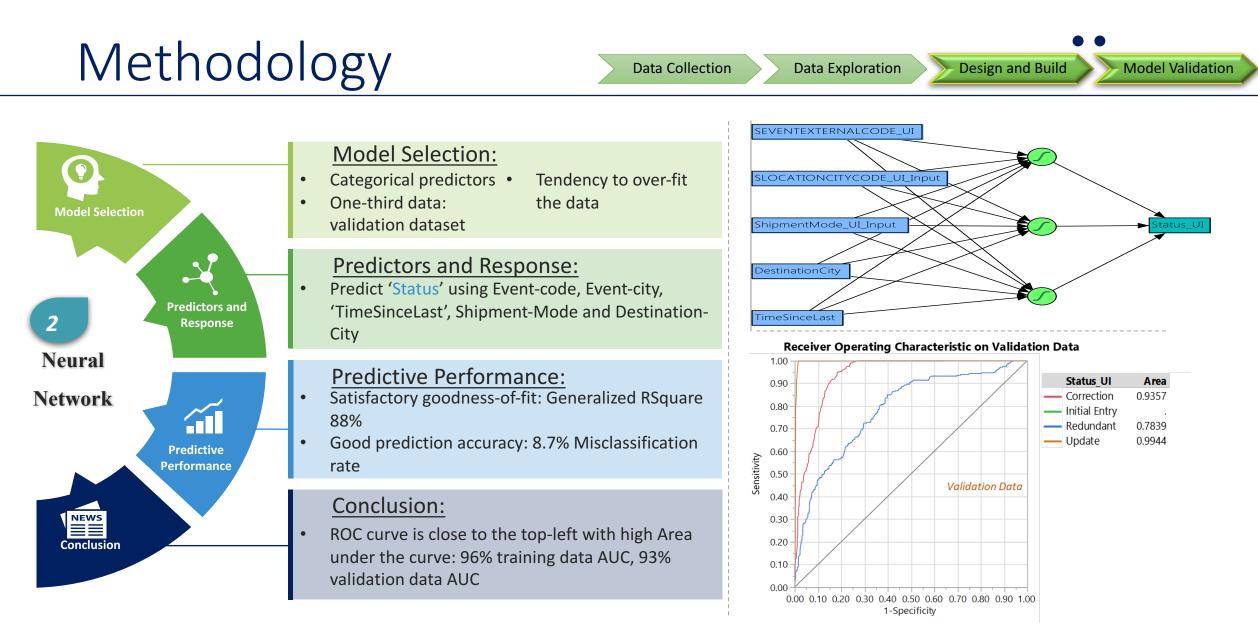
2 clusters (green, brown) are distinct from the other clusters with little overlap. The green cluster corresponds to records with high value of 'TimeSinceLast' and 'TimeSinceFirst' and brown for low values of the same.



Methodology

Data Collection





MIT Center for Transportation & Logistics

Results and Discussion

Results and Discussion

System errors

• Frequency of System errors by Month

- Absolute maximum: December
- Relative maximum: July
- Frequency of System errors by Day of Week:
 - Maximum: Monday. Followed by Wednesday and Friday
- Frequency of System errors by **Shipment Milestones**:
 - Maximum- 'Arrived at destination airport'

Operational errors (?)

- Most operational errors on Mondays
- Most frequent events with Errors:
- SundaysMondaysRestPick-upContainer
on BoardDelivery Appt. or
Appt. Confirmed
- Month with Absolute Max: November
- Month with Relative Max: March
- 74 hours (median) to correct the operational errors
- Time is maximum for 'Arrived at Destination Hub' – 448 hours and minimum for 'Cargo received from airline' – 15 hours
- Delays driven by 'Late delivery due to Customer request'

Models ́ш • Naïve Bayes: Feasible approach for categorical predictors Performed no better than a Naïve approach Performance expected to Naive Bayes improve with addition of predictors Neural Network: supports categorical predictors Goodness of fit **Predictive performance Risk of overfitting** Conclusion: Neural net model with predictors- (Event-code, Event-city, 'TimeSinceLast', Shipment-Mode and Destination- City) can predict Status of the record.

Limitations and Future Roadmap

Limitations and Future Roadmap

Limitations

Data

- Type ٠
- Duration .

Impacted Fields

Time-Stamp •

•

City Codes

Business Rules

- Prioritization ٠ approach
- Shipment • itinerary

Short term steps

System Errors

- Additional data for Root cause analysis:
 - System response rate
 - Performance
 - Geographical reasons
 - Outages

Migrate from Legacy System

- Data Bottleneck ٠
- **Process Bottleneck** ۲

Predictive Performance

Numerical Data ۲

•

۰

- Stratified sampling approach
- Overcoming computational limitations for Naïve Bayes

Long term steps

Cloud and Big Data Enablement

- Prevention vs reaction to errors •
- **Data Triangulation** •

Results may be limited but the • approach is extendable

Errors using inadequate data are much less than those using no data at all. *Charles Babbage*

Thank You

Rohini Prasad
 Gerta Malaj
 MIT SCM 2017

Special Thanks to our **Thesis Advisor:**

Matthias Winkenbach