Risk Mitigation at Call Centers

Advised by: Dr. Josué Velázquez-Martínez and Dr. Cansu Tayaksi

Jin Li

<u>Experience</u>: Engineer & Program Manager <u>Industries</u>: Aerospace

Viviana Nieto V

Experience: Operations & Strategy Research <u>Industries</u>: Consumer Goods, Healthcare and Service

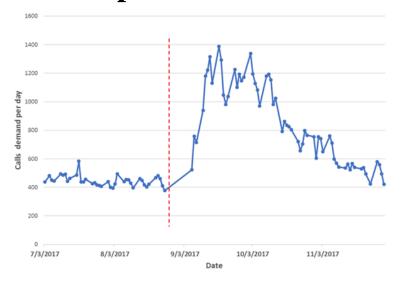
Introduction

- Since 1980, the United States has experienced **218** weather and climate disasters.
- In 2017, across the U.S. there were **15** weather and climate events that resulted in material and financial losses that exceeded **\$1 billion** each
- The annual average of climate disasters has **doubled** in the last five years.

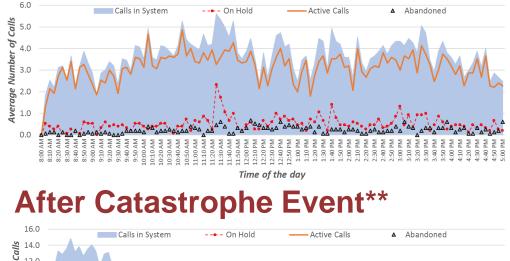
Image adapted from 2017 Weather and Climate Disasters in the US. (<u>https://www.ncdc.noaa.gov/billions/</u>)

Photo: Hurricane Harvey 2017

The Company


- Manages an operation that helps sellers connect with buyers of product A through ecommerce site
- Over **150 physical locations** across the US, where Company X conducts **storage**, **distribution** and **call center** operations relating to the transfer of product A
- Call center operation handles inbound and outbound calls
- Target Service Level Agreement (SLA) to respond to incoming calls in under 60 seconds

Motivation


How can a company **leverage resources** from a network of **call centers** to accommodate during a disruption, such as a **climate catastrophe event**?

Before Catastrophe Event*

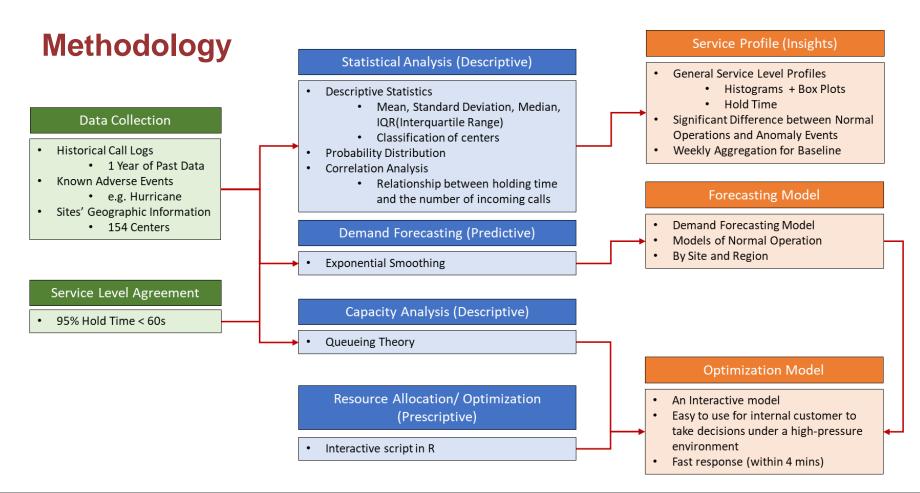
 $\begin{array}{c} 14.0 \\ 12.0 \\ 0.$

Increase in calls 141% Waiting Time

32 sec > 143 sec

28.9%

Drop Calls

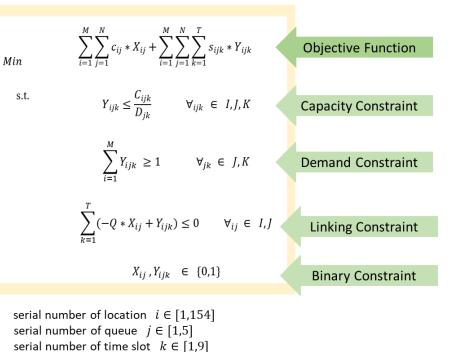

4.3%

*Data Source: Three weeks of data before climate event

**Data Source: Three weeks of data after climate event

Methodology

Statistical Analysis & Classification


Optimization Model

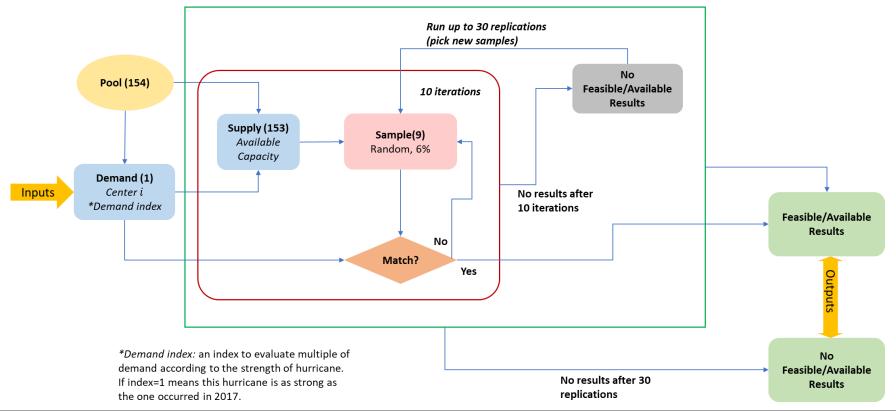
k

Q

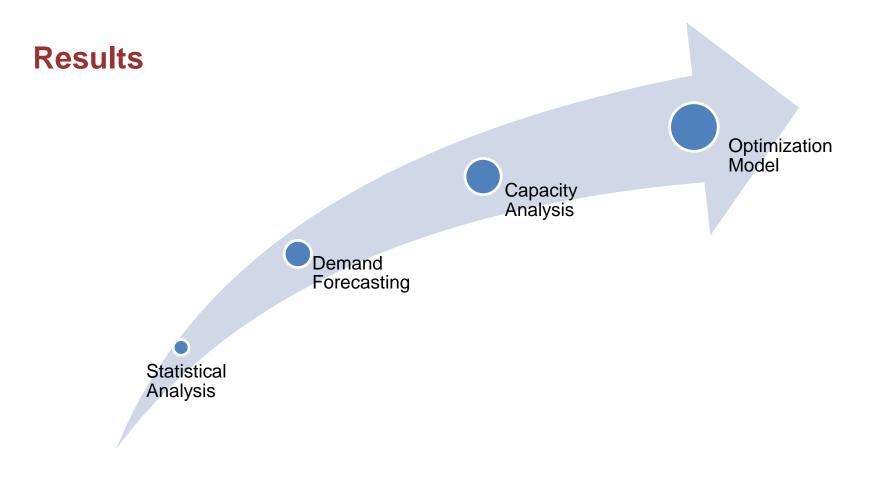
 X_{ii}

big number

be recommended to reroute calls, =1; otherwise, =0 (supply side)

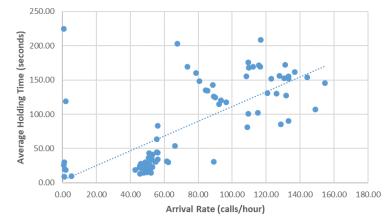

 Y_{iik} need to be reroute, =1; otherwise, =0 (demand side)

MIT Center for Transportation & Logistics


Methodology

Optimization Model

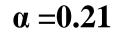
Results – Statistical Analysis



Call centers analysis with holding time lower than 24.5 seconds (Group S)

	Q1 (25%)	Q2 (50%)	Q3 (75%)	IQR (Q3-Q1)	Lower Fence (Q1-1.5*IQR)	Upper Fence (Q3+1.5*IQR)
Holding time	4	7	14	7	-6.5	24.5
Duration time	60	116	221	105	97.5	378.5
Total time	75	135	247	112	-93	415

Interquartile Range (IQR) analysis for all call centers


Relationship between call arrival rate and holding time (July to October 2017)

Results – Demand Forecasting

- Simple exponential smoothing
- Parameter alpha (α) that minimizes Root Mean Squared Error (RMSE) of call demand.

Alpha (α)	RMSE
0.21	4.335632
0.2	4.336268
0.18	4.337819
0.19	4.339523
0.17	4.343181
0.16	4.344477
0.15	4.347776
0.22	4.34808
0.23	4.350566

Results – Capacity Analysis

Inputs: Waiting time (t_q^{ijk}) , coefficient of variation for interarrivals (CV_a^{ijk}) , coefficient of variation of process time (CV_p^{ijk}) , process time (t_p^{ijk}) and, number of parallel agents (m^{ijk})

Output: Maximum capacity for call arrivals (r_a^{ijk})

Location	Queue	Timeslot	Demand	Max. Capacity	Capacity Bandwidth
312	Queue 1	1	6	54	48
312	Queue 1	2	6	58	52
312	Queue 2	3	4	58	54
312	Queue 2	4	3	46	43
312	Queue 3	5	3	30	27
312	Queue 3	6	3	23	20
312	Queue 5	7	3	24	21
312	Queue 5	8	3	4	1
312	Queue 4	9	3	42	39

Results – Optimization Model

Inputs:

- \rightarrow Location to reroute calls for
- → Demand Forecast
- → Capacity Bandwidth

Output: Call rerouting assignments

Solver: GLPK

Software: R

Queue ÷ Location "A"	¢ Location to	÷ Timeslots "A"
1	349	c("1", "3", "4", "6", "8", "9")
1	437	c("2", "5", "7")
2	365	c("1", "2", "3", "4", "5", "6", "7", "8", "9")
3	429	c("1", "3", "7", "8")
3	391	c("2", "4", "5", "6", "9")
4	447	c("1", "2", "3", "4", "5", "6", "7", "8", "9")
5	349	c("1", "3", "4", "6", "7", "9")
5	447	c("2", "5", "8")

Example of optimization output

Interactive Script in R

	- K Stript ->
onsole Terminal ×	-0
C:/Users/vivi_/Dropbox (MIT)/Capstone MIT/model_ps/data/ 🔿	4
	P

Discussion

- As the **number of locations** in the optimization **increases**, the **running time** of the model **increases** exponentially
- Random selection of locations with multiple iterations can help minimize the running time of the Mixed Integer Linear Programming (MILP) model
- Call rerouting framework can be applied in other scenarios such as outages and call center closures

Conclusion

- A sudden increase of demand affects the service level the company has with its customers
- Optimization model helps on **minimizing** the **risk** of losing a customer due to bad service during a catastrophe event
- Implementing the proposed framework will lead to quicker response times, better customer service and higher customer satisfaction

Future Work

- Interactive dashboard using "Shiny Apps" package or Matplotlib
- Utility development
- Integration with ERP system

Viviana Nieto Valencia

https://www.linkedin.com/in/viviana-nieto-valencia

Jin Li

https://www.linkedin.com/in/li-jin-msc-pmp-966977109

Appendix A - Queueing Theory Equations

$$t_q = \left(\frac{CV_a^2 + CV_p^2}{2}\right) \left(\frac{u^{\sqrt{2(m+1)}-1}}{m(1-u)}\right) t_p$$

Notation	Definition	Unit
r_a^{ijk}	Rate of call arrival at location i in queue j for timeslot k	calls/ time
t_a^{ijk}	Mean time between arrivals at location i in queue j for timeslot k	time/call
CV_a^{ijk}	Coefficient of variation of interarrivals at location i in queue j for timeslot k	
m ^{ijk}	Number of parallel agents at location i in queue j for timeslot k	
r_p^{ijk}	Rate or capacity at location <i>i</i> in queue <i>j</i> for timeslot <i>k</i>	calls/time
t_p^{ijk}	Mean effective process time at location i in queue j for timeslot k	time/call
CV_p^{ijk}	Coefficient of variation of process time at location i in queue j for timeslot k	

$$u = \frac{r_a * t_p}{m}$$

Notation	Definition	Unit
t_q^{ijk}	Expected waiting time at location i in queue j for timeslot k	time
	Expected time in system	
CT ^{ijk}	$(t_q^{ijk} + t_p^{ijk})$ for a call at location <i>i</i> in queue <i>j</i> for timeslot <i>k</i>	time
WIP ^{ijk}	Average calls in process at location i in queue j for timeslot k	calls
WIP_q^{ijk}	Average work in process in queue at location i in queue j for timeslot k	calls
u^{ijk}	Utilization of the server $(r_a^{ijk} + r_p^{ijk})$ at location <i>i</i> in queue <i>j</i> for timeslot <i>k</i>	calls/time

