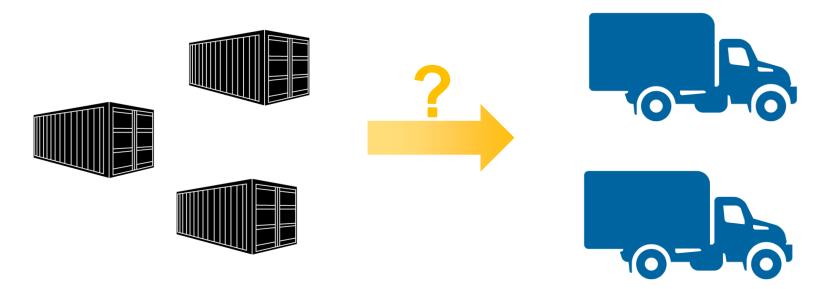
Prioritizing Inbound Transportation

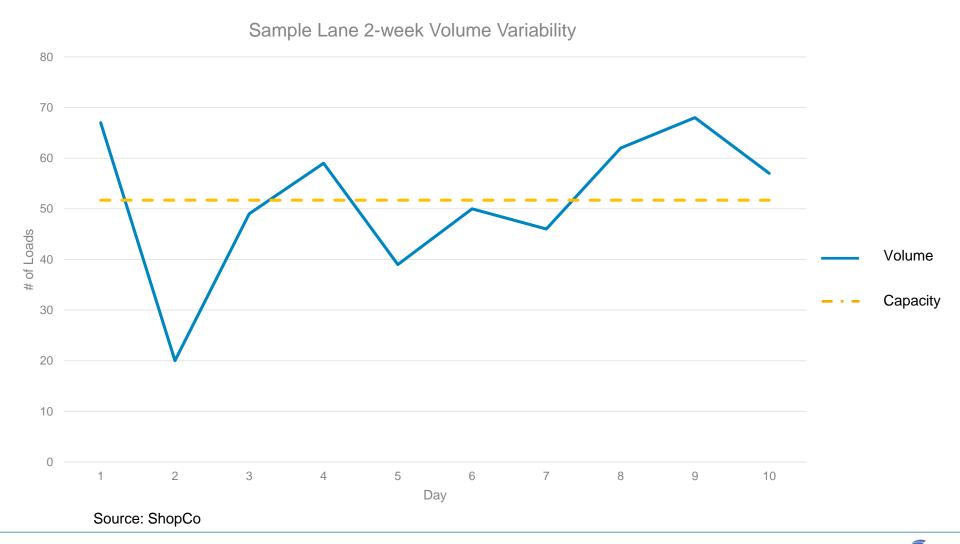
Authors: Rick Rassey, Yong Zheng Advisors: Dr. Chris Caplice, Dr. Francisco Jauffred

MIT SCM Research FEST

May 19, 2016


Agenda

- Context
- Prioritization Method
- Optimization
- Key Takeaways


3 Loads vs. 2 Trucks

Research question: How to determine which loads to pick up when capacity is constrained?

Motivation Why prioritize?

Analytic Hierarchy Process (AHP)

Prioritization Technique

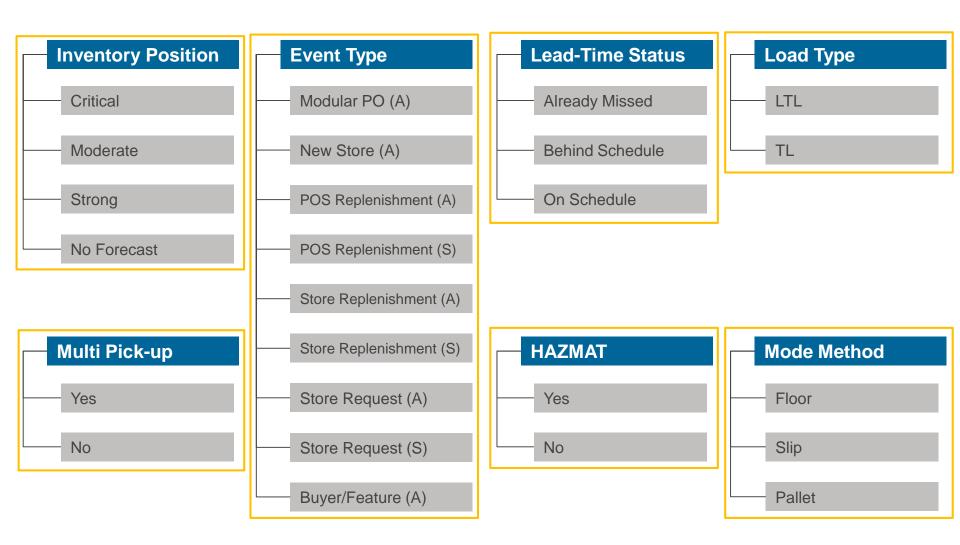
- Widely used in multi-criteria decision making
 - Allocate funds across research projects
 - Develop criteria to rate and select vendors
- Fits ShopCo's problem
 - Multiple criteria and stakeholders
 - Consistency check
 - Ratio-scaled

Leveraged AHP to define prioritization logic

- 1. Define problem
- 2. Develop hierarchical framework
- 3. Construct pairwise comparison matrices
- 4. Perform judgment of pairwise comparison matrices
- 5. Synthesize pairwise comparison matrices
- 6. Perform consistency check
- 7. Repeat steps 3-6 for all levels of the hierarchy
- 8. Develop final priority values
- 9. Prioritize loads

1. Define problem

- 2. Develop hierarchical framework
- 3. Construct pairwise comparison matrices
- 4. Perform judgment of pairwise comparison matrices
- 5. Synthesize pairwise comparison matrices
- 6. Perform consistency check
- 7. Repeat steps 3-6 for all levels of the hierarchy
- 8. Develop final priority values
- 9. Prioritize loads

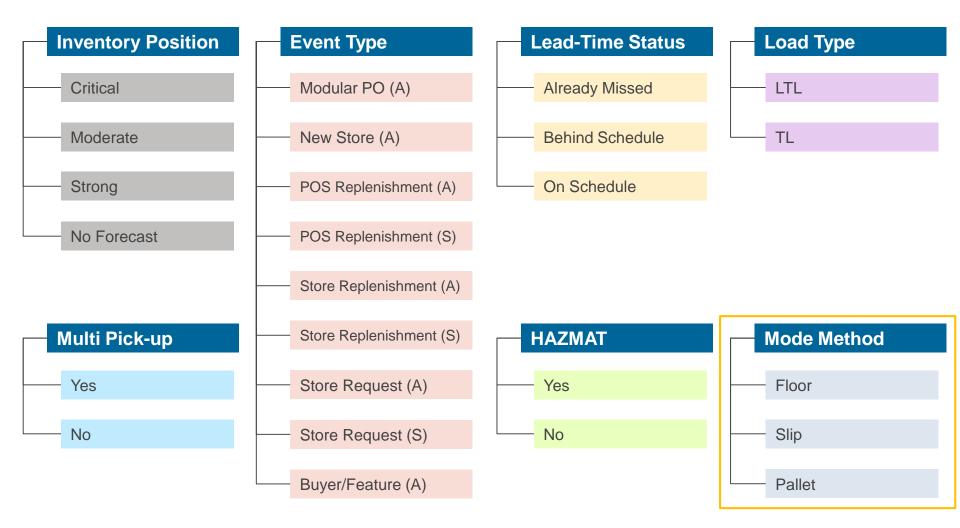


- 1. Define problem
- 2. Develop hierarchical framework
- 3. Construct pairwise comparison matrices
- 4. Perform judgment of pairwise comparison matrices
- 5. Synthesize pairwise comparison matrices
- 6. Perform consistency check
- 7. Repeat steps 3-6 for all levels of the hierarchy
- 8. Develop final priority values
- 9. Prioritize loads

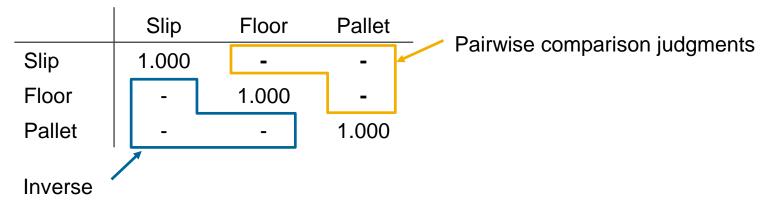
Defining Decision Criteria

...with inputs from key stakeholders at ShopCo

- 1. Define problem
- 2. Develop hierarchical framework


3. Construct pairwise comparison matrices

4. Perform judgment of pairwise comparison matrices


- 5. Synthesize pairwise comparison matrices
- 6. Perform consistency check
- 7. Repeat steps 3-6 for all levels of the hierarchy
- 8. Develop final priority values
- 9. Prioritize loads

Pairwise Comparisons

Example: Mode Method pairwise comparison

Intensity of Importance	IDATINITIAN	Explanation
1	Equal importance	Two elements contribute equally to the objective
•	Moderate importance	Experience and judgment slightly favor one element over another
5	Strong importance	Experience and judgment strongly favor one element over another
7	Very strong importance	One element is favored very strongly over another, its dominance is demonstrated in practice
•	Extreme importance	The evidence favoring one element over another is of the highest possible order of affirmation
		be used to express intermediate values. Intensities 1.1, 1.2, hts that are very close in importance

Example: Mode Method pairwise comparison

_	Slip	Floor	Pallet
Slip	1.000	-	-
Floor	-	1.000	-
Pallet	-	-	1.000

	Intensity of Importance	IJATINITIAN	Explanation
	1	Equal importanc	e Two elements contribute equally to the objective
3	Modera	te E	Experience and judgment slightly favor one element over
	importa	nce a	another
	5	Strong important	ce Experience and judgment strongly tavor one element over another
	7 Very strong importance		One element is favored very strongly over another, its dominance is demonstrated in practice
	9	Extreme importance	The evidence favoring one element over another is of the highest possible order of affirmation
			in be used to express intermediate values. Intensities 1.1, 1.2, nents that are very close in importance

Example: Mode Method pairwise comparison

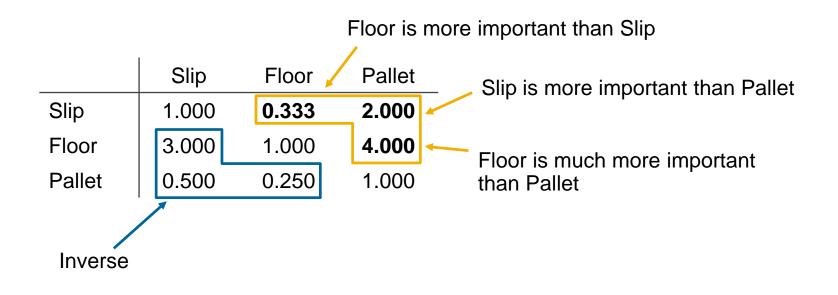
	Slip	Floor	Pallet
Slip	1.000	3.000	-
Floor	-	1.000	-
Pallet	-	-	1.000

Intensity of Importance	IDATINITIAN	Explanation
1	Equal importance	Two elements contribute equally to the objective
3	Moderate importance	Experience and judgment slightly favor one element over another
5	Strong importance	Experience and judgment strongly favor one element over another
7	Very strong importance	One element is favored very strongly over another, its dominance is demonstrated in practice
9	Extreme importance	The evidence favoring one element over another is of the highest possible order of affirmation
		be used to express intermediate values. Intensities 1.1, 1.2, hts that are very close in importance

Example: Mode Method pairwise comparison

	Slip	Floor	Pallet
Slip	1.000	-	-
Floor	-	1.000	-
Pallet	-	-	1.000

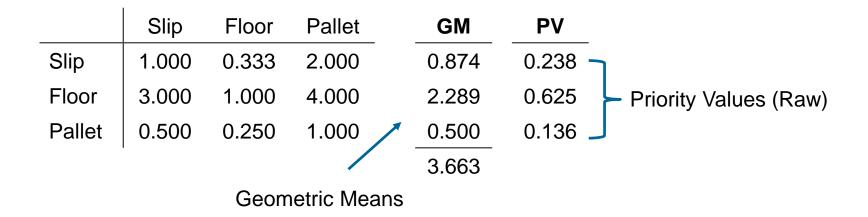
	Intensity of Importance		I Intinition	Explanation				
		1	Equal importance	Two elements contribute equally to the objective				
		3	Moderate importance	Experience and judgment slightly favor one element over another				
Use reciprocal!		5	Strong importance	Experience and judgment strongly favor one element over another				
		7	Very strong importance	One element is favored very strongly over another, its dominance is demonstrated in practice				
		9	Extreme importance	The evidence favoring one element over another is of the highest possible order of affirmation				
				be used to express intermediate values. Intensities 1.1, 1.2, the that are very close in importance				


Example: Mode Method pairwise comparison

	Slip	Floor	Pallet
Slip	1.000	0.333	-
Floor	-	1.000	-
Pallet	-	-	1.000

Intensity of Importance	IDATINITIAN	Explanation					
1	Equal importance	Two elements contribute equally to the objective					
3	Moderate importance	Experience and judgment slightly favor one element over another					
5	Strong importance	Experience and judgment strongly favor one element over another					
7	Very strong importance	One element is favored very strongly over another, its dominance is demonstrated in practice					
9	Extreme importance	The evidence favoring one element over another is of the highest possible order of affirmation					
Intensities of 2, 4, 6, and 8 can be used to express intermediate values. Intensities 1.1, 1.2, 1.3, etc. can be used for elements that are very close in importance							

Pairwise Comparison – Mode Method Results



- 1. Define problem
- 2. Develop hierarchical framework
- 3. Construct pairwise comparison matrices
- 4. Perform judgment of pairwise comparison matrices
- 5. Synthesize pairwise comparison matrices
- 6. Perform consistency check
- 7. Repeat steps 3-6 for all levels of the hierarchy
- 8. Develop final priority values
- 9. Prioritize loads

Synthesize & Consistency Check

Convert comparison matrix (relative values) into priority values

- Geometric Consistency Index (GCI): 0.0548
- GCI Threshold: 0.3147
- Consistent?

- 1. Define problem
- 2. Develop hierarchical framework
- 3. Construct pairwise comparison matrices
- 4. Perform judgment of pairwise comparison matrices
- 5. Synthesize pairwise comparison matrices
- 6. Perform consistency check

7. Repeat steps 3-6 for all levels of the hierarchy

- 8. Develop final priority values
- 9. Prioritize loads

- 1. Define problem
- 2. Develop hierarchical framework
- 3. Construct pairwise comparison matrices
- 4. Perform judgment of pairwise comparison matrices
- 5. Synthesize pairwise comparison matrices
- 6. Perform consistency check
- 7. Repeat steps 3-6 for all levels of the hierarchy
- 8. Develop final priority values
- 9. Prioritize loads

*Adapted from Ariff et al., 2012

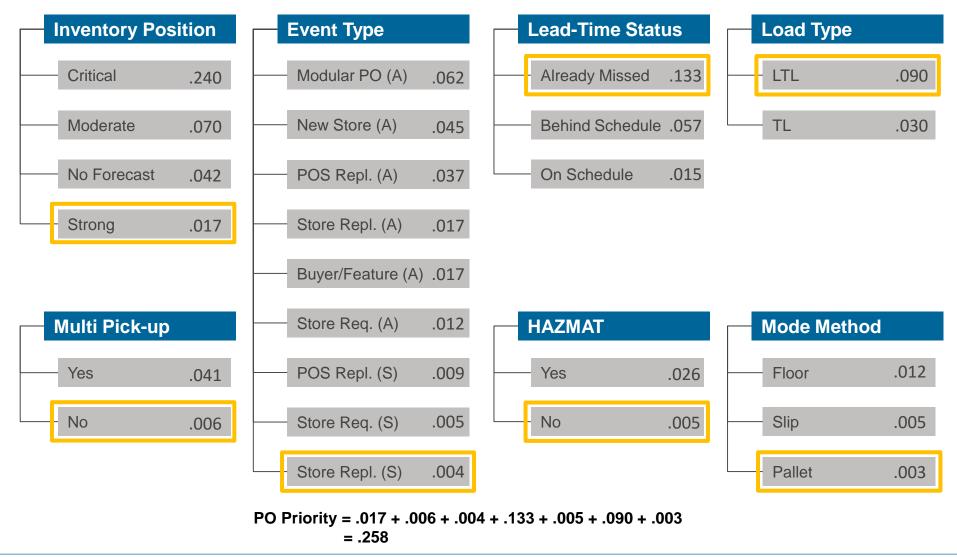
AHP Output – Raw Priority Values

Inventory Position	.370	Event Type	.209	Lead-Time Status	.205	Н	Load Type	.120
Critical	.649	Modular PO (A)	.298	 Already Missed	.649		- LTL	.750
Moderate	.190	New Store (A)	.217	 Behind Schedule	.279		- TL	.250
No Forecast	.113	POS Repl. (A)	.175	On Schedule	.072			
Strong	.047	Store Repl. (A)	.082					
		Buyer/Feature (A)	.082					
Multi Pick-up	.047	Store Req. (A)	.057	HAZMAT	.031	Н	Mode Method	.019
Yes	.875	POS Repl. (S)	.044	Yes	.833		Floor	.625
No	.125	Store Req. (S)	.024	- No	.167		- Slip	.238
		Store Repl. (S)	.020				Pallet	.136

AHP Output – Final Priority Values

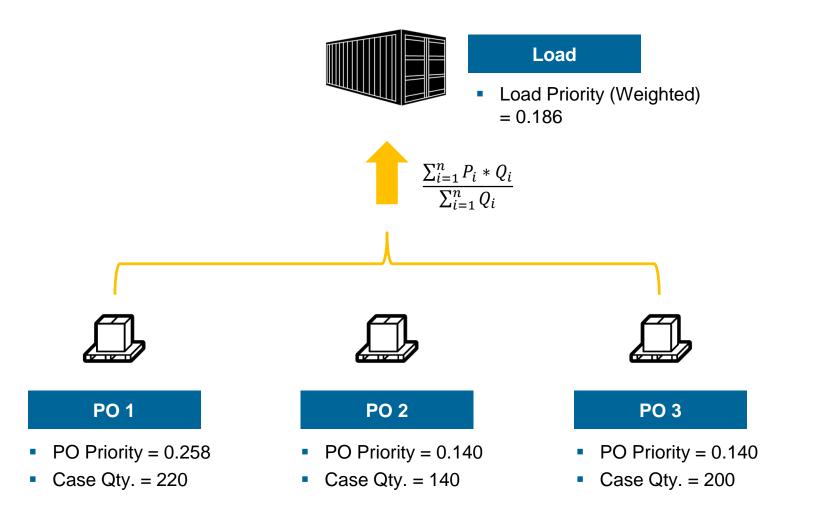
Inventory Posit	tion		Event Type		Lead-Time State	us	Load Type	
Critical	.240	$\left - \right $	Modular PO (A)	.062	- Already Missed	.133	LTL	.090
Moderate	.070		New Store (A)	.045	 Behind Schedule	.057	TL	.030
No Forecast	.042		POS Repl. (A)	.037	- On Schedule	.015		
Strong	.017		Store Repl. (A)	.017				
			Buyer/Feature (A)	.017				
Multi Pick-up		$\left - \right $	Store Req. (A)	.012	HAZMAT		Mode Method	
Yes	.041	$\left - \right $	POS Repl. (S)	.009	Yes	.026	Floor	.012
No	.006		Store Req. (S)	.005	- No	.005	Slip	.005
			Store Repl. (S)	.004			Pallet	.003

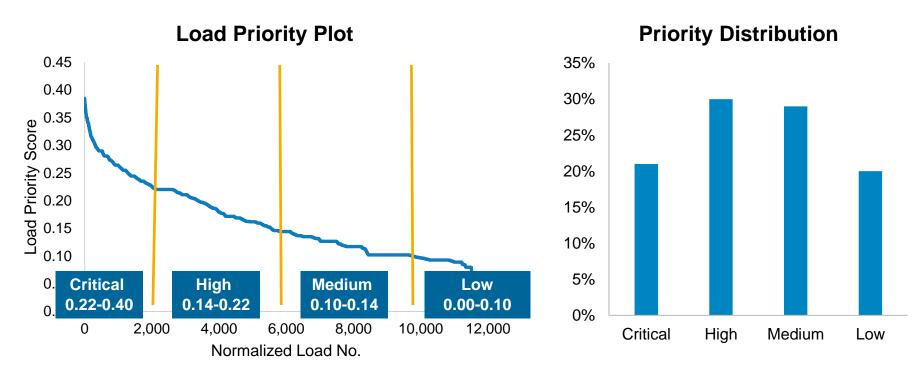
- 1. Define problem
- 2. Develop hierarchical framework
- 3. Construct pairwise comparison matrices
- 4. Perform judgment of pairwise comparison matrices
- 5. Synthesize pairwise comparison matrices
- 6. Perform consistency check
- 7. Repeat steps 3-6 for all levels of the hierarchy
- 8. Develop final priority values


9. Prioritize loads

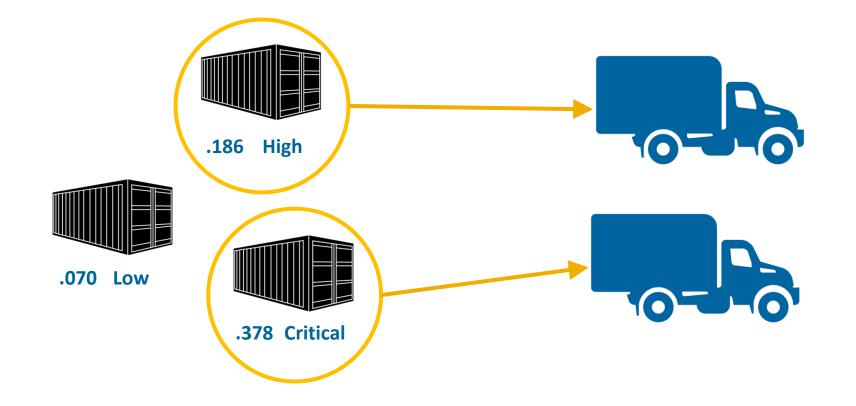
*Adapted from Ariff et al., 2012

Calculate PO Priority Score– Example

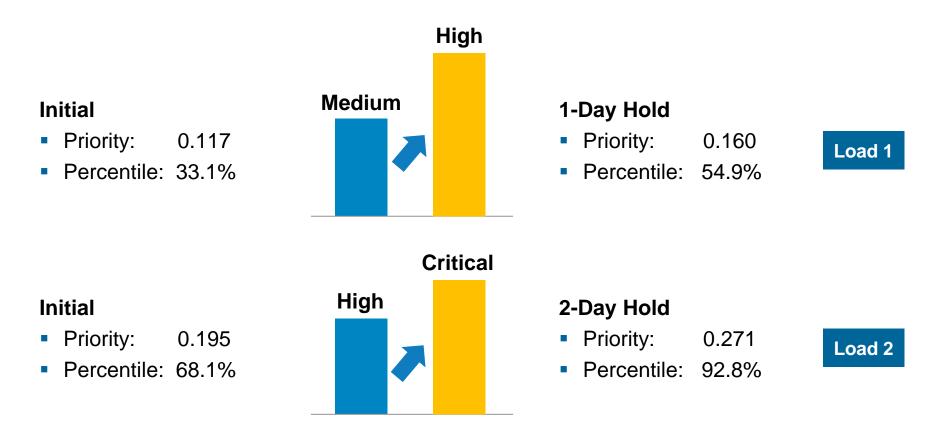

Sum up scores for decision criteria


Roll-up to Load Priority Score

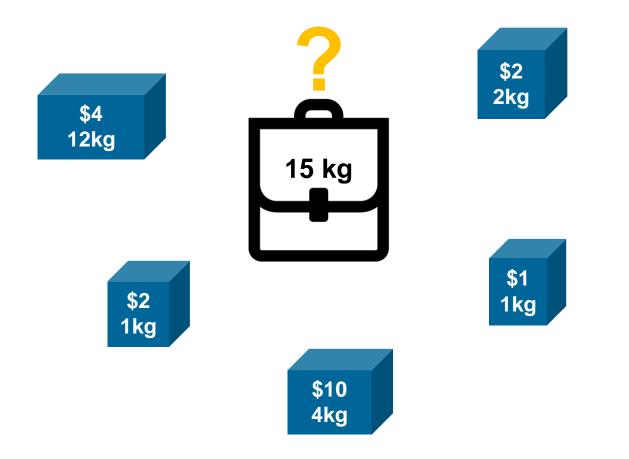
Weighting PO Priority


Segmentation to Facilitate Priority Management

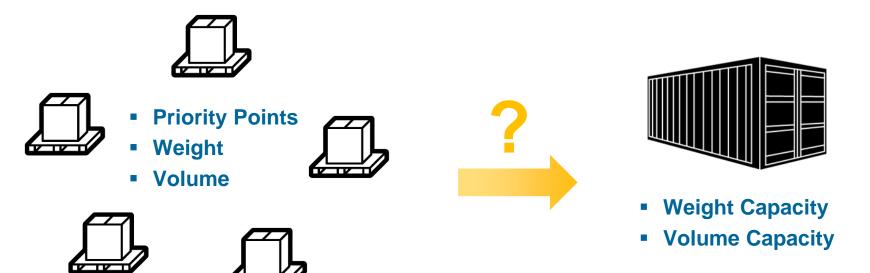
Answer to Initial Research Question


3 Loads vs. 2 Trucks

Sensitivity Analysis Impact of holding a load – 2 Examples


- A load's priority would increase if continually skipped for shipment
 - Lead-time Status would worsen
 - Inventory Position would decrease

Knapsack Problem


How to fill knapsack with maximized value without exceeding weight limit?

Knapsack Optimization

Could we reshuffle PO's and increase total priority points shipped?

Knapsack Optimization

Mixed Integer Linear Programming (MILP)

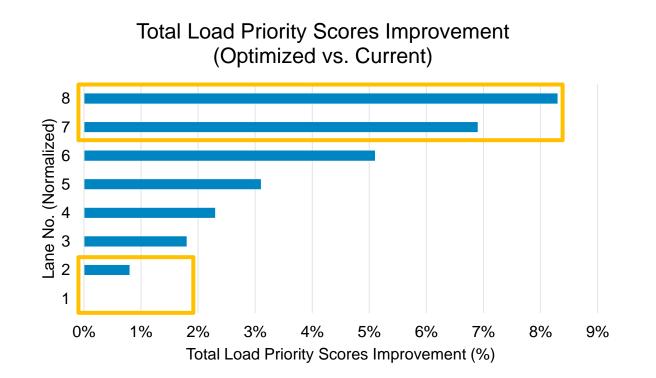
Objective Function

 Maximize total priority points & minimize number of trucks used

- Volume capacity
- Weight capacity
- Number of trucks available

Maximize:

$$\sum_{j=2}^{m} \sum_{i=1}^{n} X_{i,j} * P_i - c * \sum_{j=2}^{m} T_j$$


Subject to:

$$\begin{split} &\sum_{i=1}^{n} X_{i,j} * V_{i} \leq Vmax_{j} \ \forall j = 2, 3, ..., m \\ &\sum_{i=1}^{n} X_{i,j} * W_{i} \leq Wmax_{j} \ \forall j = 2, 3, ..., m \\ &\sum_{j=2}^{m} T_{j} \leq k \\ &\sum_{j=1}^{m} X_{i,j} = 1 \ \forall j = 2, 3, ..., m \\ &\sum_{i=1}^{n} X_{i,j} \leq M * T_{j} \ \forall j = 1, 2, ..., m \end{split}$$

Knapsack Optimization

Test run results

Observed opportunities to improve load priority scores by up to 8.3%

Key Takeaways

Prioritization

 Retailers often need to prioritize inbound loads when carrier capacity is constrained using systematic logic to align priorities with company objectives

AHP

 AHP can be leveraged to develop hierarchical framework that considers multiple factors and produces ratio-scaled priority scores

Optimization

 Knapsack optimization could increase total priority of loads shipped by reassigning PO's within loads on a given lane

Thank you!

