Impact of Drug Supply Chain Security Act on US Pharmaceutical Industry Under Decentralized Information Flow

Meng Ying Chang, Raghavendran Mohan

Agenda

- Drug Supply Chain Security Act (DSCSA)
- Implementation Solution Design
 - Physical Flow
 - Information Flow
- Supply Chain Impact Evaluation
 - Scenarios
 - Operations Cost
 - IT Investment
 - CAPEX
 - Overall Impact
- Conclusion & Future Research

Fighting Counterfeit Drug

10% of the US pharmaceutical products

\$75B business worldwide

60% don't have active ingredients

17% have inaccurate dosages

50% are sold through websites

16% have incorrect ingredients

Drug Supply Chain Security Act (DSCSA)

Serialize Product

• All prescription drugs should have a unique serial# at the unit level

TS/TI/TH

• Records need to be maintained at serial# level when there is a transfer of ownership

FDA Tracing Request

• All requests for records regarding a serial# needs to be addressed within 48 hours

Overview of U.S. Drug Supply Chain

Manufacturer

Distributor

Dispenser

DSCSA Implementation Timeline

Implementation Solution Design

Physical Flow

- Unit Level Model
 - All drugs are serialized but there is no mapping to higher UOMs
- Matryoshka Model

Information Flow

Centralized Model

Decentralized Model

To-Be Process Map - Matryoshka Model

To-Be Process Map – Unit Level Model

To-Be Decentralize Data Exchange Model

Supply Chain Impact Evaluation

Evaluation Scenarios

- Centralized information flow with "Matryoshka" nesting of data
- Decentralized information flow with "Matryoshka" nesting of data
- Centralized information flow with unit level data, no nesting
- Decentralized information flow with unit level data, no nesting

Operations Impact - Turnaround time

Impact on Inbound process is lower as the DSCSA only mandates verification on a sample (10% volume)
 Outbound shipment impact can be reduced by effective inventory management, which is not in scope for this thesis

IT Impact – Initial Investment & Recurring Cost

- Decentralised models require least investment and recurring cost as they will be built on existing data interfaces
- Centralised models
 require most
 investment as new data
 exchanges have to built
 from scratch

Financial Impact - CAPEX

- Matryoshka model require more CAPEX in labelling equipment
- Unit level model require less CAPEX from manufacturers and wholesalers

Overall Comparison

Conclusion & Future Research

Conclusion

Advantages of Decentralized Model

- Information flow solution can be built on existing IT infrastructure
- Ensures business privacy and data security for individual players

Least Impact Scenario

- Matryoshka + Decentralized model has least financial impact
- Lower operations cost & IT recurring cost

The Hybrid Reality

- Difficult to standardize implementation across the whole supply chain
- Hybrid model would increase complexity of execution

Future Research

Complexity for Repackager

- Number of units increase significantly.
- Difficulty in mapping inbound serial numbers with outbound serial numbers

New Technology Application

- Implement Cloud service for decentralized data storage
- Apply RFID in product palletization
- Leverage Block Chain to verify incoming data

Impact of Drug Supply Chain Security Act on US Pharmaceutical Industry Under Decentralized Information Flow

Meng Ying Chang, Raghavendran Mohan

