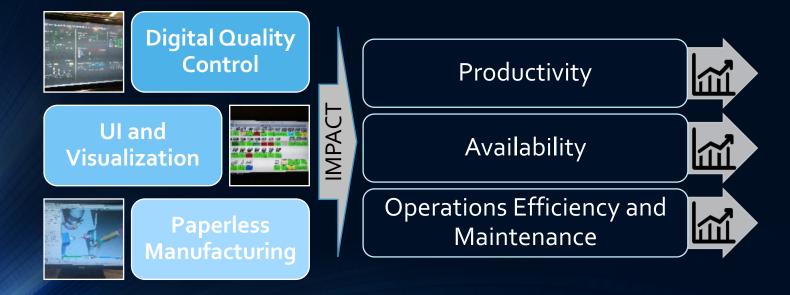
Quantifying the Impact of Digitalization in a Power Generation Company

BY PAULINA GISBRECHT ADVISORS: DR. MATTHIAS WINKENBACH & DR. MILENA JANJEVIC

Agenda

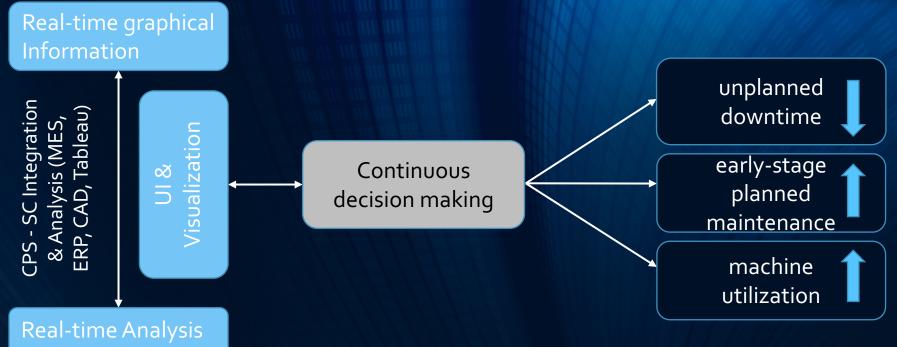
- Industrial Digitalization Background
- Research question
- Showcase introduction
- Methodology
- Results
- Conclusions and Recommendations

Industrial Digitalization Background INDUSTRY 4.0 AND SMART MANUFACTURING Internet-based techical Internet infrastructure of Things Physical production flows ٠ connected with digital Cyberphysical information flows Industrial Software as a Service • Internet Digitalization **Digital Thread** ٠ Service-Oriented • of Services Infrastructure Decentral production system Smart ٠ Factory Combination of IoT, IoS and CPS • 3D printing (Additive • Manufacturing), robotics


Smart Factory

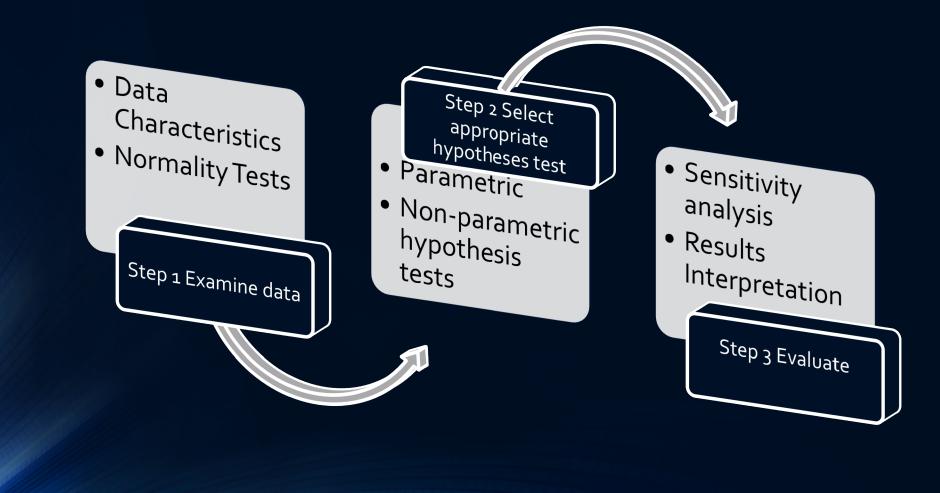
Massachusetts Institute of Technology

Research question

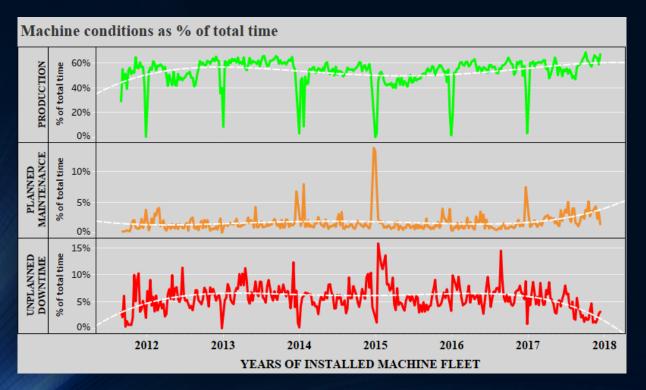

- Academia many concepts proposed
- <u>Assumptions</u>: Digitalization boosts manufacturing supply chain performance
- Studies based on interviews
- Where is the quantitative proof?

Massachusetts Institute of Technology

Showcase Introduction

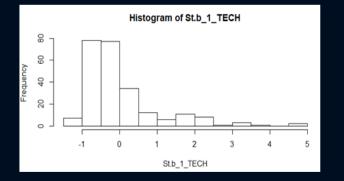

COMPANY AND DATA

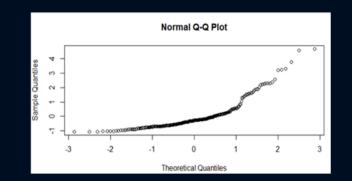
- Test case: Impact of Visualization on manufacaturing SC performance
- Showcase Factory: Gas & Diesel Engines Manufacturer
- Data: historical records of various machine conditions in the Manufacturing Execution System (MES) since 2011
- Concept of visual interactive analysis October 2016: touchscreen whiteboards, tablets, displays, Tableau


Methodology

Step 1 - Examine data

DATA CHARACTERISTICS


- Data signals recorded instantly
- Data samples accumulated in one-week bins
- Units: Average duration of one condition in % of total
- Identification of outliers
- Examination of descriptive statistics



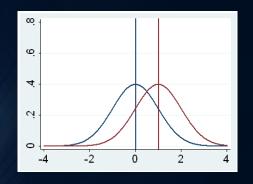
Step 1 - Examine data

NORMALITY TESTS

• Graphical

• Numerical ($-2 < \beta < 2$)

Kurtosis				Skewness			
	Planned	Unplanned	Machine	Planned	Unplanned	Machine	
	Maintenance	Downtime	Utilization	Maintenance	Downtime	Utilization	
Machine							
cluster 1	7.56196	4.70336	1.09605	7.59543	2.05665	-0.5024	


• Formal: Shapiro-Wilk test: W = 0.69465, p-value = 1.99e-10

Step 2 - Select appropriate hypotheses test

PARAMETRIC INFERENTIAL STATISTICS

 t- test for two dependent samples

NON- PARAMETRIC INFERENTIAL STATISTICS

- Wilcoxon Signed-Ranks Test
 - More than two subjects = 13 machine clusters
 - Sample pairs are dependent = data before and after is compared for the same machine cluster

Wilcoxon Signed-Ranks Test

78 samples: 13 machine clusters * 3 machine conditions * 2 before/after pairs

- 1. Calculate differences between sample means
- 2. Take absolute values and assign ranks: highest rank for the largest difference
- 3. Assign the polarity to the ranks
- 4. Create 2^n permutations of all possible combinations of signed ranks
- 5. Examine which rank is assigned to the observed value
- 6. Calculate the sum of positive and negative ranks and p-value
- 7. Can be conducted in R

	Mean of pre- implement ation data X1	•	Difference D	abs. D	Ranks R of D	Signed ranks R+/R-
Machine cluster 1	4	1	3	3	2	2
Machine cluster 2	6	8	-2	2	1	-1
Machine cluster 3	9	2	7	7	3	3

Step 3 – Evaluate Results

MACHINE UTILIZATION

- H_1 : Visualization increased machine utilization H_1 : $X_1 < X_2$
- $H_0: X_1 \ge X_2$
- $V = \sum R_{+} = 16$ and pvalue = 0.0199
- *H*₀: <u>rejected</u> with 95%
 confidence

PLANNED MAINTENANCE

- H_1 : Visualization increased planned maintenance H_1 : $X_1 < X_2$
- $H_0: X_1 \ge X_2$
- $V = \sum R_+ = 7$ and pvalue = 0.002319
- *H*₀:<u>rejected</u> with 99% confidence

UNPLANNED DOWNTIME

- H_1 : Visualization reduced unplanned machine downtime H_1 : $X_1 > X_2$
- $H_0: X_1 \leq X_2$
- $V = \sum R_+ = 57$ and pvalue = 0.2274
- *H*⁰ not rejected

Step 3 – Evaluate Results SENSITIVITY ANALYSIS

- Test run without a machine cluster with atypical record pattern The p-value of unplanned downtime closer to significance level: p-value \approx 0.07
- Other variations: shorter period of observation, tests without clustering, exclusion of • single machines with atypical pattern

The results of the test remain robust

VISUALIZATION IN INDUSTRIAL POWER EQUIPMENT MANUFACTURING MACHINE UTILIZATION AND **UNPLANNED** PLANNED (PREVENTIVE) DOWNTIME MAINTENANCE

significant

Conclusions and Recommendations

MICRO PERSPECTIVE

MACRO PERSPECTIVE

- Implementation of UI & Visualization partially successful
- Simple methodology universally applicable

- More academic focus on manufacturing SC needed
- Digital mind-set in power industry still in early growth stage

Recommendation: Bridge between academic research and industry Co-development of pre-concepts and post-quantitative analysis

THANKYOU!

QUESTIONS?

