Warehouse Network Design For A Commodity Chemical Manufacturer

Author: Dangfun Pornnoparat Advisor: James B. Rice, Jr.

MIT SCM Research FEST

May 19, 2016

Agenda

- 1. Motivation
- 2. Methodology
- 3. Results
- 4. Conclusion

Project Background & Scope

- Sponsor company is an integrated manufacturer of petrochemical products
- Downstream and upstream manufacturing locations in Southeast Asia
- Project focuses on the plastic resins business in Thailand

Image source: https://www.icis.com http://www.fastflowpipes.com/wp-content/uploads/2014/10/19737_HDPE-PIPES.jpg https://plastics-car.com/ClientResources/Images/Sm%20File%20Size%20-Taurus%20facia%20system-%20Plastics-car%20thumbnail.png

3

Existing Warehouse Network

 There are three plant attached warehouses and two standalone warehouses

Operational Inefficiency

- Finished goods are moved between warehouses before they are shipped to customers. This movement, called "internal transfer", incurs handling and transportation costs.
- Caused by limited storage space at plant-attached warehouses

Annual Shipment Volume By Type (2015)

Customer shipment Internal transfer

Research Question

How many warehouses should the Company have and what should their sizes be to minimize total transportation and warehousing costs?

Model Design

• A mixed-integer linear program is used to model the warehouse network

Model Inputs

- 1. Product data
- 2. Annual demand by customer location
- 3. Production data
- 4. Transportation costs
- 5. Warehousing costs and capacities

Model Inputs

- 1. Product data
- 2. Annual demand by customer location
- 3. Production data
- 4. Transportation costs
- 5. Warehousing costs and capacities

Model Inputs – Warehousing Costs and Capacities

Fixed & Variable cost

Throughput capacity

 Number of trucks each warehouse can handle per day multiplied by the number of units that can fit on a truck

Storage capacity

- Storage capacity is converted to the maximum flow that it can support, depending on the inventory turns. Example:
 - > Storage space = 10,000 tons of product
 - > 14.6 turns/year
 - Maximum flow = 10,000 x 14.6 = 146,000 ton/year
- Three numbers of inventory turns are used to represent Mean, Minimum, and Maximum turns. They are calculated based on historical data.
- Storage capacity assumes 80% utilization

Optimization Runs

- 1. Optimization with Transportation Costs only
- 2. Optimization with Transportation Costs, Warehouse Costs, and Warehouse Capacities
 - Baseline with mean, minimum, and maximum inventory turns
 - Demand increase 10% with mean, minimum, and maximum inventory turns
- 3. Optimization without warehouse constraints (allow expansion)

1) Optimized with Transportation Costs Only

Key findings

- 25M is the threshold for the cost of operating a second warehouse
- Savings diminish because existing warehouse locations are too close together

Transportation Costs For Each Number of Warehouses

Total Cost

2) Optimized with Transportation, Warehouse Costs and Capacities

• Existing network can support operations but is not optimized

Difference in Total Costs Among Optimized Scenarios (compared to the baseline scenario)

...Resulting Warehouse Utilization

Key findings

- Storage capacity is the main constraint
- Limited storage capacity drives the usage of a higher cost warehouse, W10, instead of the lower cost warehouse, W1

0%	0%	Throughput				Storage				
Scenario	W1	W3	W7	W10	WL	W1	W3	W7	W10	WL
1. Baseline, mean IT	23%		36%	closed	83%	100%	100%	100%	closed	97%
2. Baseline, max IT	closed	67%	45%	closed	82%	closed	100%	100%	closed	96%
3. Baseline, min IT	closed	44%	30%	27%	86%	closed	100%	100%	60%	100%
4. Demand increase 10%, mean IT	closed		36%	38%	86%	closed	100%	100%	72%	100%
5. Demand increase 10%, max IT	29%		45%	closed	83%	100%	100%	100%	closed	97%
6. Demand increase 10%, min IT	19%	44%	30%	36%	86%	100%	100%	100%	81%	100%

Capacity Utilization

3) Optimized Allowing Expansion

- The model expands plant-attached warehouses. Standalone warehouses are closed.
- 92M difference in cost compared to the baseline represents a threshold for expansion investment

Difference in Total Costs Among Optimized Scenarios (compared to the baseline scenario)

Sensitivity Analysis – Fixed Cost

• The warehouses in the optimal solution remain selected when fixed cost increase between 50-260%

Sensitivity of Fixed Cost

Configuration remains optimal

Sensitivity Analysis – Plant to Warehouse Transportation Cost

 The warehouses in the optimal solution remain selected until plant-towarehouse transportation cost decreases more than 50%. At this point, cost of internal transfer becomes cheap enough that it's worth doing.

Sensitivity of Plant to Warehouse Transportation Cost

Configuration remains optimal

Sensitivity Analysis – Warehouse to Customer Transportation Cost

• The warehouses in the optimal solution remains selected until warehouse-tocustomer transportation costs increases by more than 58%

Sensitivity on Warehouse to Customer Transportation Cost

Configuration remains optimal

Conclusion

- Given the existing locations, it is most cost effective to ship direct. Locations are too close to benefit from pooling.
- More benefits will be gained by expanding the lower cost warehouses

Q&A

