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ABSTRACT 

To mitigate operational disruptions, oil and gas companies maintain high levels of Maintenance, Repair, 

and Operations (MRO) inventory. However, our sponsor company was found to have twice the non-

moving inventory value compared to its competitors, prompting an interest to reduce inventory holding 

costs — the cost associated with the storage of inventory, such as cost of capital, annual warehouse fees, 

annual taxes, and annual warehouse costs. This study aims to reduce such costs by segmenting 19,153 

MRO SKUs based on their demand characteristics and building a Mixed Linear Integer Programming 

(MILP) model to redesign the network of warehouses and plants. By eliminating the 1:1 relationship 

between warehouses and plants, the warehouses can serve more than one plant and the sponsor can 

avoid individual inventory management for each plant. Through our MILP model, we investigated 

different levels of consolidation though scenario analysis. In the most conservative scenario without 

inventory systems integration, the new network design resulted in a 12% reduction in warehouse and 

transportation costs and a 22% reduction in safety stock holding costs. While full inventory system and 

legal entities integration led to 27% savings in both.        
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1. INTRODUCTION 

1.1 MOTIVATION 

The COVID-19 pandemic revealed to the world the impact supply chains have on organizations’ 

ability to deliver the products and services that customers need. The disruptions in supply chains led many 

organization leaders to rethink the supply chains they have built over decades and to transform them to 

be more agile and resilient in preparation for disruptions to come. From the consumer goods industry to 

the automotive industry, companies have adhered to high levels of inventory to meet the demand of sales 

when under a stressed situation. This is similar to Maintenance, Repair and Operations (MRO) inventory, 

in which high inventory would mitigate the risk of disrupting operations due to missing machinery, 

equipment, and tools necessary to run a business. 

This is the situation faced by many companies in the Oil & Gas industry, including our sponsor 

company. Oil & Gas is one of the largest industry sectors in the world and plays an influential role in the 

global economy as the world’s primary fuel sources, generating an estimated $6 trillion in global revenue 

in 2021 (“Oil and Gas Global Market Report 2022, By Type, Drilling Type, Application”, 2022). The sponsor 

company is one of the world's largest publicly traded international oil and gas companies (“Sponsor’s 2021 

Annual Report”, 2022). The company provides products including energy, chemicals, lubricants, and lower-

emissions technologies through their three primary business units: BU1 (focused on exploring for and 

developing oil and natural gas), BU2 (focused on engineering, manufacturing, and delivering products 

needed by consumers) and BU3 (focused on commercializing lower-emission business opportunities).  

At the beginning of 2022, a study from a consulting firm revealed that our sponsor company carries 

two times more dollar value of non-moving MRO materials — inventory in warehouses with zero months 

usage over a period of 2 years or greater — than their competitors (“Supply Chain Transformation 

Assessment”, 2021). Thus, the Supply Chain team is motivated to realize opportunities to reduce the MRO 
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inventory holding costs — the cost associated with the storage of inventory, such as cost of capital, annual 

warehouse fees, annual taxes, and annual warehouse costs — for approximately 800,000 stock-keeping 

units (SKUs) (Sponsor Company, personal communication, 2022).  

This inventory that serves all three business units — BU1, BU2, and BU3 — is held in 74 

warehouses and approximately 80 refineries/plants worldwide, which typically have a 1:1 ratio (Sponsor 

Company, personal communication, 2022).  That is, a SKU that is held in a warehouse can fulfill the 

requests for one and only one specific refinery/plant. Although in the past our sponsor company have 

implemented inventory optimization models within some sites, now they want to challenge the 1:1 

network design to realize opportunities for reducing holding costs and potentially consolidating inventory 

through an optimized supply chain network. This presents an opportunity for our sponsor company to 

both bring efficiency in their inventory management and allocate capital resources to other functional 

areas in their company. 

1.2 PROBLEM STATEMENT AND RESEARCH QUESTIONS 

Our sponsor company’s goal is to reduce the MRO holding cost.  Today, the network for MRO 

inventory is designed as a 1:1 relationship between warehouses and plants. Our sponsor company wishes 

to have an optimized network that helps them reduce the holding cost components depicted in Figure 1, 

such as Cost of Capital, Warehouse (WH) Facility Maintenance Cost, Global Inventory Management (GIM) 

cost, etc. Through the optimized network, there is potential to consolidate and reduce the MRO inventory. 

However, reducing inventory could potentially negatively affect service levels — the expected probability 

of being able to satisfy all possible inventory requirements. Therefore, our goal of reducing inventory 

should not compromise the high service level targets our sponsor company has set in their systems to 

avoid any disruption in production and loss of profits.  
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Figure 1 

Global Inventory Holding Cost Component Breakdown 

 

Note. These holding costs components were calculated based on the year 2021 and communicated 
during the sponsor’s 2021 Holding and Ordering Costs Overview Meeting in 2022. From Sponsor 
Company, personal communication, 2022.  

In that context, the questions to be answered include: 

1. Is the current network design of our sponsor company the most cost-efficient? 

2. How can our sponsor company redesign their MRO inventory network to reduce their holding cost 

while keeping target service levels? 

3. How can our sponsor optimally allocate inventory with the recommended network? 

1.3 SCOPE: PROJECT GOALS AND EXPECTED OUTCOMES 
The project’s goal is to provide our sponsor company with a quantitative optimization model that 

reduces the MRO inventory holding cost, while maintaining the required target service levels. The 

reduction of MRO holding cost can potentially allow the company to liberate cash flows and to invest it in 

other business initiatives.  

To assist, we hypothesize that optimizing their network of warehouses and plants would be the 

best course of action to assist our sponsor company’s three business units. An optimized network would 

potentially allow the company to break the 1:1 ratio from warehouse to plant. Instead of each plant having 
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its own inventory, we expect that through an optimized network our sponsor company would have the 

ability to reduce holding cost components from Figure 1, including: Cost of Capital; Annual Taxes; Annual 

Contract Warehouse (WH) Employee Cost; Third Party WH Annual Cost; WH Annual Lease Fees; WH Facility 

Maintenance Cost; and Annual WH Equipment Cost. Although the Global Inventory Management (GIM) 

costs and the 3 Year (Yr.) Average (Avg.) Write-off Shrinkage is not in scope of the project due to data 

limitations, we discuss the implications of such costs in the Discussion chapter.  Lastly, the Annual WH 

Employee Cost is also out of scope given that the sponsor company would not reduce their workforce 

based on the optimized network, but rather deploy their employees in additional functional capacities.  

In addition, we hypothesize that having an optimized network would potentially allow the sponsor 

company to consolidate inventory. Hence, through a formal method to segment MRO inventory the 

sponsor company would be able to define where to allocate the inventory to fulfill the internal demand, 

resulting in lower inventory levels. 

Lastly, to ensure that the requirements of internal stakeholders are met, these hypotheses should 

have a regional focus (North America, Latin America, Europe, Asia) and include those SKUs that the 

company’s Supply Chain team agrees are most important. Based on input from the sponsor, the project is 

focused on the 84,654 MRO SKUs stored in the state of Texas from United States within the region of North 

America. 

In that context, the deliverables to the sponsor company include: 

1. A network optimization model to reduce holding costs through consolidation of inventory. 

2. An inventory model that segments SKUs and recommends inventory location after consolidating 

the sponsor’s company supply chain network. 
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1.4 PROJECT PLAN OF WORK 

To build the network optimization model and recommend where to hold the inventory in the new 

network to reach our sponsor’s company goal — reduce holding cost — our project plan included the plan 

depicted in Figure 2. First, we reviewed the literature regarding the challenges in managing MRO inventory, 

the identification of appropriate segmentation methods, the strategies to reduce MRO inventory, and the 

methods to optimize supply chain networks while estimating the inventory reduction due to consolidation. 

Second, we identified a methodology for MRO inventory segmentation, network optimization, and 

inventory reduction estimation. Third, we interviewed key stakeholders from various teams and visited 

warehouses and plants to further understand the current state. This helped us to gather appropriate 

qualitative feedback and quantitative data to run our analysis that served as inputs to our model, which 

was validated after running a test compared to the current state (resembles the real-life). Consequently, 

we reviewed results from the model for further improvements. Lastly, we synthesized information and 

provided recommendations for implementation to our sponsor company.  

Figure 2 

Project Timeline 
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2. STATE OF THE ART 

Having the right amount of MRO inventory and in the right place in the Oil & Gas industry can save 

companies downtime and bring productivity to their operations.  Large inventory volume reduces the risk 

of operations downtime but increases the holding cost of a company. Long lead times for MRO response, 

on the other hand, may lead to an increase in operations downtime. Thus, the central problem of our 

capstone is how our sponsor company can reduce MRO holding costs while maintaining target service 

levels. In simple terms, finding the perfect balance between supply and demand would generally optimize 

inventory. But this is more complex, and companies face challenges to reach optimality. Thus, to address 

the problem, we reviewed literature in several areas. First, we examined the current management 

challenges of MRO inventory. Second, we reviewed the most common strategies to optimize MRO 

inventory across companies’ supply chains. Lastly, we assessed network design optimization method while 

investigating methods to estimate the inventory reductions by consolidating inventory. 

2.1 CURRENT MRO CHALLENGES IN COMPANIES 

Stocking the right number of MRO parts is essential, as many companies carry millions to billions 

of dollars’ worth of spare parts (Basten & Houtum, 2014).  This increase in costs and pressure on 

companies to reduce expenses anywhere possible has led to more attention to MRO inventory 

management (Bechtel & Patterson, 1997). Gilbert and Finch (1985) explain another reason why companies 

are giving more attention to MRO inventory. The increasing interest in receiving goods closer to when they 

are needed, also known as just-in-time (JIT), is leading to a decrease in work-in-progress inventory (WIP). 

Hence, there is less stock between workstations, making equipment maintenance and repair critical to 

reduce breakdowns and productivity (Gilbert & Finch, 1985).  

However, companies have challenges in determining appropriate inventory levels for MRO parts, 

as their usage is very volatile and is hard to have an accurate forecasted demand. As Schroder (2004) 
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stated, “managing spare [parts] is like walking a tightrope” with managers trying to find the perfect balance 

with overstocks on one side and stock-outs on the other. Some challenges in predicting demand and 

controlling stock for MRO parts are the high number of parts managed, the presence of intermittent or 

lumpy demand patterns, and the risk of stock obsolescence (Bacchetti, et al. 2012). 

High number of parts managed: MRO parts have unique characteristics and companies hold tens 

to hundreds of thousands of them (our sponsor holds 800,000 SKUs) increasing the complexity of 

analytical tools to manage inventory (Hill, 2014).  Therefore, segmenting MRO items, discussed further in 

our literature review, helps reduce the challenges in forecasting demand and determining optimal 

inventory policies (Bacchetti, et al. 2012).  

Presence of intermittent or lumpy demand patterns: Boylan and Syntetos (2010) define 

intermittent demand as frequent observations with zero demand and sporadic non-zero demand. 

Intermittent demand with high volume size variability is called lumpy demand (Boylan & Syntetos, 2010). 

Because of this intermittent demand and volatile lead times, companies often choose to hold large buffers 

of inventory to mitigate the risk of production downtime (Chen et al., 2019). Hence, it is a challenge to 

maintain target productivity and service levels with the opposite objective of reducing inventory.  

Risk of stock obsolescence: Schroder (2004) describes that some MRO parts may have not been 

purchased within the past three years due to their low usage rate. Therefore, lead times may not be up to 

date, leading managers to overestimate to avoid a stockout. This results in inventory obsolescence (Chen 

et al., 2019) which over time, may translate to waste and loss (Hill, 2014). 

By examining these challenges, we determined to focus on investigating the methods to classify 

MRO parts based on their unique characteristics of demand. This would serve as input in deciding where 

to locate inventory in the supply chain network based on their demand characteristics. As Bacchetti, et al. 
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(2012) explained, the integrated view of classification, demand forecasting, and inventory management 

can potentially lead to effective management of spare parts. 

2.2 COMMON MRO INVENTORY MANAGEMENT STRATEGIES 

2.2.1 MRO INVENTORY SEGMENTATION 

Clustering MRO parts into groups with similar characteristics helps companies manage inventory 

and reduce the complexity of working with hundreds of thousands of individual parts (Ernst & Cohen, 

1990). These segments can be based on many different factors, including usage rate, holding dollar value, 

turnover, criticality, commodity, and more (Hill, 2014).  Although increasing the number of clusters may 

lead to better accuracy, four clusters provide a good trade-off between accuracy and implementation 

viability (Chen et al., 2019).  

Bechtel and Patterson (1997) segment MRO items by two major groups, consumables and spare 

parts, whereas Gilbert and Finch (1985) suggest an ABC analysis, which consists of prioritizing ratings of 

SKUs that are most important (A), intermediate importance (B), and least important (C). Similarly, Bacchetti 

et al. (2012) and Teunter et al. (2010) explain that most companies rarely rely on more than one criterion 

and often use ABC analysis for spare parts based on demand volume or dollar value. However, Gilbert and 

Finch (1985) describe a multiple criteria approach for ABC, in which Class A items are those with long lead 

time and high criticality, Class C items are those with short lead time, and all others are Class B items.  This 

classification can easily be extended to more than three clusters (Teunter et al., 2010) and is widely used 

due to its practical implementation but may not be the best method to reduce cost and increase service 

measures for complex inventory systems (Ernst & Cohen 1990).  

Boylan et al. (2008) use demand characteristics as criteria to segregate MRO inventory into four 

clusters: intermittent demand for those with infrequent demand observations, erratic demand for those 

with volatile demand size, lumpy demand for those with infrequent demand observations and variable 
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demand size, and smooth demand for those with frequent demand and small variability. Chen et al. (2019), 

however, extend the classification factors to include lead time, unit price, number of plants using part, 

commodity group, how recently the part is used, and inventory on hand. Overall, segmenting the inventory 

would help to both identify the best forecasting method (Boylan et al., 2008) and pool high-value, 

intermittent items into a centralized site (Hill, 2014).  

K-means clustering, a widely used unsupervised machine learning algorithm, has been proven to 

be an effective method for SKU segmentation based on demand characteristics, such as mean and 

variation of demand (Jain, 2010). By partitioning SKUs into distinct groups, k-means enables businesses to 

better understand and manage their inventory and supply chain performance (Chen & Wu, 2012). The 

algorithm iteratively assigns each SKU to a cluster with the nearest centroid, updating the centroids until 

convergence is achieved (Arthur & Vassilvitskii, 2007). This approach allows for identification of patterns 

and trends in SKU demand, facilitating targeted inventory management strategies and optimizing resource 

allocation (Syntetos et al., 2016). Further, the inclusion of both mean and variation of demand as features 

in the clustering process accounts for both the magnitude and volatility of demand, ensuring a more 

comprehensive understanding of SKU behavior (Panigrahi et al., 2018). 

We approached our segmentation of MRO SKUs for our sponsor company similarly to Boylan’s et 

al. methodology. We applyed the k-means clustering method, as we believe that demand characteristics 

of each cluster would help identify different inventory management strategies.   
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2.2.3 NETWORK DESIGN OPTIMIZATION 

Companies are always seeking ways to reduce costs to improve profitability and ultimately create 

more value for shareholders. As costs continue to rise, companies have more pressure to reduce their 

costs without affecting their competitive position. Caplice (2015) suggests that network models could be 

used to make better decisions that impact the companies’ supply chains. One of these impacts is being 

able to provide the required service level with lower inventory and fewer assets, such as warehouses. 

Thus, a strategy that companies could pursue to reduce inventory without hurting the required 

service level is to create an optimized network design of their warehouses and plants. The optimization 

consists of the consolidation and unification of multiple regional warehouses into fewer, sometimes bigger, 

warehouses. In addition, the option to downsize or even close some of their warehouses is becoming more 

attractive to companies. This strategy enables the elimination of underutilized warehouses.  In this way, 

network design optimization is a plausible way for a company to save costs, mainly in transportation, 

inventory, and warehousing. Melachrinoudis & Min (2007) states that these cost reductions are possible 

due to economies of scale that a network design enables; the decrease in the number of warehouses and 

duplicated inventory allows the company to bring down inventory holding cost and inventory shortage 

risk. 

Chen et al. (2019) proposes that common challenges in MRO inventory with characteristics such 

as high variance in the demand, slow moving but high value, and irregular lead-times can be mitigated by 

creating a network to centralize MRO parts in fewer warehouses. Picking material from centralized 

warehouses also creates savings by making the handling of inventory easier and enabling lower freight 

transportation rates through economies of scale (Melachrinoudis & Min, 2007). Moreover, Gong and 

Yücesan (2012) mention that a network designed to facilitate transshipment could lead to cost reductions 

and better service due to an increase in flexibility and responsiveness. Transshipments are a particular 
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network design where goods are moved from an origin node to an intermediate warehouse or distribution 

center and finally to the plant or node that requested the goods. 

To evaluate the effectiveness of a network design to reduce inventory holding costs, the savings 

produced by the reduction of inventory levels must be calculated. Goentzel (2016) suggests that the 

savings from an initiative that reduces the inventory levels could be calculated by multiplying the dollar 

value of the inventory reduction by the percentage that represents the inventory holding cost. 

Melachrinoudis and Min (2007) provide another technique to estimate the savings in inventory reduction 

that results from a warehouse consolidation. The technique is called the Square Root Law, which 

determines the optimal amount of inventory to stock based on the amount of inventory in each location 

before consolidation.  

In the field of inventory management, the Inventory Square Root Law has been extensively studied 

and applied to various supply chain scenarios. Harris (1913) initially proposed this concept, which has since 

been widely accepted and adopted by practitioners and academics alike (Harris, 1913). The basic premise 

of the Inventory Square Root Law is that the safety stock level should be adjusted in proportion to the 

square root of the ratio of the new and old number of warehouses. Silver et al. (1998) further explored 

this concept in their book, "Inventory and Production Management in Supply Chains," where they 

examined the applications and implications of the Inventory Square Root Law in diverse supply chain 

contexts. 

Nonetheless, a major drawback of warehouse consolidation is that it tends to lengthen lead times, 

impacting negatively on customer service (Melachrinoudis and Min, 2007). To Melachrinoudis and Min 

(2007), the effectiveness of the supply chain relies heavily on the warehouse. Therefore, the success and 

failure of the supply chain operations depends on how well companies can manage a network of 
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warehouses that enables them to satisfy customer needs with the lowest possible inventory and 

transportation costs. To achieve this, the literature suggests mathematical programming models. 

Mathematical programming, such as Linear Programming (LP) and Mixed Integer and Linear 

Programming (MILP), is commonly used in supply chain (Caplice, 2015). Linear programming is an 

optimization technique that has variables, linear constraints, and a linear objective function to minimize 

or maximize. In warehouse location selection, however, MILPs are recommended given that the fractional 

answers resulting from LPs are not suitable (Caplice, 2015).  In this sense, MILPs are formulated very 

similarly to LPs but are solved very differently as the variables can only be integers. Therefore, we 

formulated a MILP of MRO inventory for our optimization model, which is further explained in our 

Methodology chapter.  
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3. METHODOLOGY 

Based on the literature that we reviewed and after several meetings with the sponsor company, we 

approached the main research question – how can our sponsor company redesign their MRO inventory 

network to reduce their holding cost while keeping target service levels? — by optimizing the supply chain 

network design. This would allow the sponsor company to decrease the number of warehouses in their 

network, reducing the warehouses’ expenses, which are the components of holding cost depicted in 

Figure1, and reducing the inventory levels through consolidation, which would impact the cost of capital. 

Our methodology to optimize the supply chain network design is divided into five sections: 

1. Data Collection and Analysis 

2. SKU Segmentation 

3. Network Optimization Model 

4. Validation 

5. Sensitivity and Scenario Analysis 

Through these steps we developed models that closely mimic the real-world setting to deliver an 

accurate assessment and recommendation to the sponsor company. 

3.1 DATA COLLECTION AND ANALISYS 

In any research project, data collection and analysis are critical components that directly impact 

the quality and reliability of the study's findings. This is especially true in the field of network optimization, 

where data is often vast, complex, and dynamic. In this section, we discuss the methods and techniques 

employed to collect and analyze the data used in our network optimization study. We describe what data 

we collected, and how we processed and analyzed the data to derive our insights. 
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3.3.1 DATA COLLECTION 

First, we received data listing the Texas inventory at the material-warehouse level from the 

sponsor company, including the stock on hand (SOH); safety stock (SS); reorder point (ROP); unit of 

measurement (UoM); yearly shipments from 2018 through 2022 (referred to as “goods issue” in the data 

and in this paper); SKUs’ category families; movement frequencies, and more. The data dictionary is 

presented in Appendix A. Second, we received data listing the materials that are stored at third party 

warehouses (3PLs) and the plants to which such 3PLs serve for our sponsor company. The data dictionary 

is presented in Appendix B. Third, we received data about their both chemical and refinery plants, 

including their address, inventory system, and legal entities. The data dictionary is presented in Appendix 

C. Lastly, we received data regarding their warehouses, including their address, inventory system; legal 

entity; fixed costs; and estimated average utilization. Nonetheless, we needed to clean and manipulate 

the data for analysis. 

3.3.2 FACILITY DATA CLEANING 

Currently, the sponsor company owns six plants in Texas (two refineries and four chemical plants 

that serve the Product Solutions business unit), which are denoted by their plant codes in this paper (i.e., 

001). Each plant has an onsite warehouse owned by the company. Each on-site warehouse, denoted by 

their plant code with a preceding ‘W’ in this paper (i.e., W001), has a fixed cost, which are yearly operating 

costs the sponsor company incurs, including WH Facility Maintenance Cost, Annual WH Equipment Cost, 

Annual Contract WH Employee Cost.  

Additionally, the sponsor company rents a physical warehouse, named Logistics Center (LC), that 

contains inventories for all six of the sponsors’ Texas plants, but the inventory is decentralized in the 

system. This means that, for example, if a valve is stored in LC for Plant 001, that valve cannot be used by 

Plant 003. Hence, we computed the fixed cost of each plant at the LC by taking the proportion of stock 
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value stored at the LC for each plant. Hence, we denote the warehouse of LC as 6 separate warehouses, 

denoted with LC and superseding plant code (i.e., LC-001). Lastly, the sponsor company uses 14 third party 

warehouses (3PLs) to store additional inventory to serve the six different plants in Texas. Such warehouses 

have a fixed Third Party WH Annual Cost and are denoted as 3PL1, 3PL2, 3PL3, etc. 

To formulate an accurate optimization model for our study, it was necessary to ascertain the 

capacity of each warehouse. While the warehouse dimensions were available, information regarding the 

dimensions of the products housed within was not available. To address this data gap, we estimated the 

warehouse capacities by computing the maximum throughput of supply over the preceding five years, 

utilizing the available shipment records, and finally used the utilization rate to calculate the capacity at 

100% utilization for each warehouse. Noteworthy is that reducing the number of warehouses would help 

the sponsor reduce the warehouse expenses and potentially reduce inventory. Hence, we assume that the 

utilization of 3PLs is 100%. 

Lastly, as part of our network optimization process, it was necessary to determine the distances 

between each warehouse and plant in our network. This was achieved by geocoding the address of each 

warehouse and plant to obtain their corresponding latitude and longitude coordinates. Subsequently, we 

calculated the Euclidean distance between each pair of coordinates to determine the distance between 

the warehouse and the plant. 

3.3.3 SKU DATA CLEANING 
Overall, global MRO inventory represented $1.5 billion in global stock value with over 92,000 SKUs. 

The data contained more than 98 distinct UoM, but about 90% of the SKUs had a UoM equal to EA, which 

means eaches or unit. Thus, after discussing with our sponsor company, we defined not only that Texas as 

the geographic scope of our project but also to focus on only SKUs with units of measurements of 

eaches/units (EA). This leads us to analyze approximately 84,654 SKUs, totaling a stock value of 

approximately $227 million. 
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Given that we have the yearly goods issues quantity to plants of each material from 2018 to 2022, 

we discussed with the sponsor company to model annual demand of each plant as the maximum yearly 

goods issue to each plant for each material. This makes the network more robust and flexible to demand 

variation because the maximum historical demand represents the upper limit of what can be expected in 

terms of demand. Thus, designing the network to meet this level of demand can provide a buffer against 

demand variations and unexpected spikes in demand. 

Lastly, we manipulated the data to understand where each SKU was stored, which in this paper 

we define it as storage location, using the listing of materials that are stored at third party warehouses 

(3PLs) and the storage bin column from the SKU list data set. The storage bin column indicated that the 

SKU was in the Logistics Center if the storage bin column started with the letter “T”, or that the SKU was 

stored in a 3PL if the storage bin column contained the name of the 3PL, or else was on the onsite 

warehouse of the plant associated with the SKU.  

3.3.4 SKU ANALYSIS 

Subsequently to collecting and cleaning the data, we performed descriptive analytics.  The 84,465 

SKUs are categorized by both their category family, which is a high-level description of the product, and 

their movement frequency, which is a description of the usage of the product over a time period, which 

are defined as: 

• Fast: materials with 12 or more months usage over a period of 2 years. 

• Medium: materials with 3 to 11 months usage over a period of 2 years. 

• Slow: materials with less than 3 months usage over a period of 2 years. 

• No-Move: materials with 0 months usage over a period of 2 years or greater. 

• Deadstock: materials with 0 months usage over a period of 5 years or greater. 

Figure 3 shows that 98% of the SKUs are Equipment and Materials withing the MRO inventor of our 

sponsor company and Figure 4 displays that 32% of the materials are Deadstock, 54% are NoMove, and 
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only 0.3% are Fast. This suggests that our sponsor company is utilizing space and is incurring holding costs 

from its obsolete inventory, which are defined as Deadstock in this paper.  But it also creates opportunities 

to optimize its inventory management processes. For instance, by reducing the Deadstock inventory, our 

sponsor company can increase their capacity to better serve their Fast, Medium, and even NoMove 

products. 

Figure 3 

SKU Distribution by Category Family 

 

Figure 4 

SKU Distribution by Movement Frequency 
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Indeed, Deadstock inventory represents a stock value of approximately $29 million, which is about 

13% of total MRO inventory stock value (Figure 5). Moreover, Figure 6 shows that 20% of the Deadstock 

materials represent about 95% of Deadstock’s stock salue (USD) and 35% of materials represent about 

99% of its stock value (USD). Thus, besides the benefits of increasing capacity by writing off Deadstock 

inventory, the sponsor company has opportunities to save costs of capital and holding costs. 

Figure 5 

SKU Stock Value (USD) by Movement Frequency 
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Figure 6 

Deadstock SKU Percentage by Stock Value (USD) 

 

3.3.1 FACILITY ANALYSIS 

Stemming from the SKU analysis, we then investigated the demand from year 2018 through 2022, 

during which there was an average of 19,237 goods issues (shipments) per year with a total average 

quantity of 546,222 units per year (demand). Figure 7 depicts that plant 001 and 003 required significantly 

more MRO inventory than the other 4 plants. Thus, there is the opportunity to store inventory in their 

respective on-site warehouses such that the products are closer to the consumption points, which in this 

case are the plants, bringing lower delivery times and higher service levels. 
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Figure 7 

Volume Quantity and Stock Value Goods Issue Percentage by Plant 

 

Furthermore, Figure 8 shows the aggregated stock on hand (SOH), totaling approximately 440,000 

units of product and aggregated safety stock (SS), totaling approximately 269,000 units of product, by 

storage location. We notice that while storage location LC-002 has the highest stock on hand, W001 has 

the highest safety stock. This creates opportunities for our sponsor company to improve their inventory 

levels and consolidate inventory through an optimized network. 
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Figure 8 

Sum of Stock on Hand (SOH) and Safety Stock (SS) by Storage Location 

 

Stemming from this analysis, we subsequently performed SKU segmentation to simplify the supply 

chain network design of the 84,465 SKUs present in the stock list data. 

3.2 SKU SEGMENTATION 

Based on the insights of Boylan et al. (2008) and Jain (2010), we examined the SKUs segmentation 

for the 19,153 SKUs that had demand over the last five years (65501 SKUs had no demand over last five 

years). For the segmentation, we examined the mean and standard deviation by material and performed 

k-means machine learning algorithm to cluster materials based on their demand characteristic’s similarity. 

The goal of k-means is to partition a set of data points into K clusters, where each data point belongs to 

the cluster with the nearest mean. The algorithm works by randomly initializing K cluster centroids and 

iteratively assigning each data point to the nearest centroid, then updating the centroids based on the 

mean of the points in the cluster. This process continues until the centroids no longer change or a 

maximum number of iterations is reached.  
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We used the silhouette score to evaluate the quality of clustering results. It measures how well 

each data point fits into its assigned cluster, compared to how well it fits into the neighboring clusters. 

Using K (number of clusters) from 2 through 9, we computed the silhouette score to identify the 

appropriate number of clusters for our data. The best silhouette score was 0.833, with two clusters (K=9). 

However, the silhouette score is a quantitative measure and does not provide any meaning of the clusters. 

Therefore, we visually represented the clusters through a scatterplot of mean and standard deviation of 

the materials, shown in Figure 9, and identified that four clusters (K=4) with a score of 0.828 would be best 

to interpret the segmentation and to perform different strategies in the supply chain. 

Figure 9 

Mean and Standard Deviation Scatterplot by Cluster 

 

Figure 9 demonstrated that Cluster 2 has SKUs with low demand variability, Cluster 3 has low to 

medium demand variability, Cluster 0 has medium to high demand variability, and Cluster 1 has high 

demand variability. Through this segmentation, we aggregate demand by cluster and plant, shown in 

Figure 10, and aggregated supply capacity by cluster and storage location, shown in Figure 11, to help us 

simplify and scale the supply chain network design. 
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Figure 10 

Demand by Cluster and Plant 

 

Figure 11 

Supply Capacity by Cluster and Plant 
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3.3 Network Optimization Model 

A network model consists of basically two elements: 1) nodes or vertices, which for our capstone 

would be the warehouses and plants that store the MRO inventory and request the parts, respectively, 

and 2) arcs or edges (the link between two nodes), which could be a road, for example. To optimize a 

network, we used a mathematical programming model, such as the MILP proposed by Caplice (2015) that 

considers warehouse location and the linkage between supply points (warehouses) and consumptions 

points (plants) to fulfill demand.  

The three key elements of a MILP model are: 1) the objective function that tries to minimize, in 

our case, warehouses’ expenses and transportation costs, 2) the decision variables (i.e., which SKUs and 

in what quantities to store in each warehouse, which warehouses to keep and which ones to close, and 

which path each SKU needs to follow in order to fulfill an internal request), and 3) the constraints (i.e., 

warehouse supply capacity, plant demand fulfillment, etc.).  

We designed a network optimization model to test our hypothesis that an optimized supply chain 

network would reduce the holding costs. We assume that all SKUs can be stored in all the warehouses, 

regardless of their characteristics. Our model mathematical formulation is listed on the next page of this 

paper (page 29). The model minimizes the fixed operating warehouse cost and transportation cost (1) 

subject to constraints: the supply capacity of each warehouse (2), the demand requirement of each plant 

(3), the minimum number of warehouses to operate (4), the maximum number of warehouses to operate 

(5), if you open a LC for a specific plant (i.e., LC-001), then the LC warehouse for all plants must be open 

(6), binary decision variable (7), and integer decision variable (8). 
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 ∑ 𝐹𝐶𝑖𝑌𝑖

𝑖

+   ∑ ∑ ∑ 𝑋𝑖𝑗𝑘𝑐𝑖𝑗

𝑘𝑗𝑖

 (1) 

 ∑ ∑ 𝑋𝑖𝑗𝑘 ≤  𝐶𝑖 𝑌𝑖  ∀𝑖 𝜖 𝐼

𝑘𝑗

 (2) 

 ∑ 𝑋𝑖𝑗𝑘 = 

𝑖

𝐷𝑗𝑘  ∀𝑗 𝜖 𝐽, ∀𝑘 𝜖 𝐾  (3) 

 ∑ 𝑌𝑖 ≥ 

𝑖

𝑀𝑖𝑛  (4) 

 ∑ 𝑌𝑖 ≤

𝑖

𝑀𝑎𝑥 (5) 

 ∑ 𝑌𝑖 ≤

𝑦𝜖𝐿

𝑍𝑙  |𝑍|, ∀𝑙 𝜖 𝐿  (6) 

 𝑌𝑖  𝜖 {0,1) ∀𝑖 𝜖 𝐼  

𝑍𝑙  𝜖 {0,1)∀𝑙 𝜖 𝐿  

 

(7) 

 𝑋𝑖𝑗𝑘 𝜖 ℤ ∀𝑖 𝜖 𝐼, ∀𝑗 𝜖 𝐽, ∀𝑘 𝜖 𝐾  (8) 

Sets: 

I = Set of warehouses 

J = Set of plants 

K = Set of MRO SKU clusters 

L = set of warehouses that are part of LC 

Decision Variables: 

𝑌𝑖 =  {
0 𝑖𝑓 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑
1 𝑖𝑓 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑖 𝑖𝑠 𝑢𝑠𝑒𝑑        

 

𝑍𝑙 =  {
0 𝑖𝑓 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑙 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑
1 𝑖𝑓 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑙 𝑖𝑠 𝑢𝑠𝑒𝑑        

 

𝑋𝑖𝑗𝑘  = Demand fulfilled of SKU cluster k in plant j by warehouse i  
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Parameters: 

𝐹𝐶𝑖 = Fixed cost for warehouse I [$] 

𝑐𝑖𝑗  = Transportation cost per unit per mile to fulfill demand in plant j by warehouse I [$/unit/mile] 

𝐶𝑖 = Supply capacity in warehouse i [units] 

𝐷𝑗𝑘 = Demand of SKU cluster k in plant j [units] 

𝑀𝑖𝑛 = Minimum number of warehouses to be used in the network [number of warehouses] 

𝑀𝑎𝑥 = Maximum number of warehouses to be used in the network [number of warehouses] 

|𝑍| = Cardinality (also referred to as length) of the set 

Lastly, we leverage the Inventory Square Root Law (Silver, Pyke, & Peterson, 1998) but modified it 

for our study to account for different warehouse capacities. The traditional Inventory Square Root Law 

formula, which states that 𝑁𝑒𝑤 𝑆𝑆 (𝑢𝑛𝑖𝑡𝑠) = 𝑂𝑙𝑑 𝑆𝑆 ∗  √
𝑁𝑒𝑤 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝐻

𝑂𝑙𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝐻
, assumes that all warehouses 

have the same capacity. However, in many practical scenarios, warehouses can have varying capacities. To 

address this issue, we introduced a capacity ratio factor into the formula, which considers the total 

capacities of both the old and new warehouses. The modified formula is defined as 𝑁𝑒𝑤 𝑆𝑆 (𝑢𝑛𝑖𝑡𝑠) =

𝑂𝑙𝑑 𝑆𝑆 ∗  √
𝑁𝑒𝑤 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝐻

𝑂𝑙𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝐻
∗

𝑁𝑒𝑤 𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑂𝑙𝑑 𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
. This approach allows for a more accurate calculation of 

the new safety stock by considering the differences in warehouse capacities. The results are presented in 

Chapter 4 and in Appendix D. 
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3.4 VALIDATION 

To determine the validity of our model, we examined the current state (real-world environment) 

of the MRO supply chain network during the year 2022 and compared it with our mathematical model 

before optimization (referred to as the baseline model in this paper). Table 1 illustrates the expenses for 

both current state and baseline model for the year 2022. This helps us to determine whether our model 

replicates the real world. 

Table 1 

Current State and Baseline Model Expenses in the year 2022 

Annual Expense Current State  Baseline Model (year 2022) 

Fixed Cost  $ 9,436,364 

 

$ 9,436,364 

Transportation Cost $ 960,000 $ 959,112 

Total $ 10,396,364 $ 10,395,476 

The warehouse annual fees, maintenance cost, and equipment cost are fixed costs for each 

warehouse. Like the capacity calculation for the LC, we use the fixed cost of the warehouse and distribute 

to each specific plant according to the proportion of stock value stored in the LC for each plant. The same 

procedure is followed for the third-party warehouse since a 3PL can hold inventory from multiple plants. 

The warehouse employee cost is calculated by the average salary of contract employees and multiplied by 

the estimated number of employees per warehouse. 

Furthermore, the sponsor pays a lump sum to a third-party logistics motor carrier of $960,000 per 

year. For our modeling, however, we need to calculate the cost per mile per unit. Hence, with all inputs to 

our model, we reverse engineer such that we calculate a $0.99 cost per mile per unit that would result in 
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a transportation cost of $960,000 to fulfill the goods issued in 2022. With this our model closely resembles 

the real-world environment, having a cost within 0.0038% of the current state.  

3.5 SCENARIO ANALYSIS 

After validating that our model is within 0.0038% of the real-world setting, we proceeded with 

analyzing four key scenarios that find both the optimal number of warehouses to store inventory and the 

optimal assignment between warehouses and plants to fulfill demand: 

1. Scenario 1: Warehouses and plants maintain a 1:1 relation, as per the current state. 

2. Scenario 2: Warehouses can only serve the plants that have the same legal entity and same 

inventory system. 

3. Scenario 3: Warehouses have an integrated inventory system but can only serve plants that have 

the same legal entity. 

4. Scenario 4: Warehouses have an integrated inventory system and can serve plants that have 

different legal entities.  

While Scenario 1 would prescribe the most optimal network design for the sponsor company as per 

current state, Scenario 2 investigates the optimal network if a warehouse can serve plants with the same 

inventory system. Specifically, plants 004 and 005 have the same inventory system and hence not only 

warehouse W004 and W005 can serve plants 004 and 005, interchangeably, but also LC-004 and LC-005 

can be consolidated into one LC, which is denoted as LC4. Similarly, since plants 003 and 006 have the 

same inventory system, not only warehouse W003 and W006 can serve plants 003 and 006, 

interchangeably, but also LC-003 and LC-006 can be consolidated into one LC, which is denoted as LC3 (LC1 

represents LC-001, and LC2 represents LC-002. as these have different inventory systems). 

Furthermore, we investigated Scenario 3 and Scenario 4, in which the sponsor company integrates its 

inventory systems and can transact orders and movements of MRO SKUs across multiple legal entities. 

Thus, in Scenario 3 the sponsor company can not only use W001, W004, and W005 to serve plants 001, 

004, and 005 interchangeably but also consolidate their LC into one, which is denoted as LC1. Similarly, 
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the sponsor company can not only use W002, W003, and W006 to serve plants 002, 003, and US1, 

interchangeably but also consolidate their LC into one, which is denoted as LC2. Scenario 4, on the other 

hand, enables the company’s warehouses to serve all plants and to consolidate all 6 LCs into one LC, 

denoted as LC1. 

Within each scenario, we perform sensitivity analysis to determine the degree of robustness of the 

optimal solution in response to changes in the input data, such as increasing the supply capacity of 

warehouses or the demand at each plant. This analysis helps to identify the critical factors that can affect 

the optimal solution. We also investigated if the supply throughput capacity of warehouses is increased 

due to the reduction of 35% of Deadstock materials currently stored in the warehouses. This allowed us 

to illustrate the different benefits and risks of closing warehouses and decide which option best suits our 

sponsor company.  
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4.0 RESULTS 

The results chapter presents the outcomes of the four key scenarios analyzed in our study. The 

analysis was designed to explore the effects of different capacity levels through integration of warehouses, 

and consolidation of inventory, and cost structures on the optimal design of the network. The results are 

presented in detail below, including the key findings, trends, and recommendations that emerged from 

the analysis. 

4.1 SCENARIO 1 

Scenario 1 assesses the most optimal network design for the sponsor company as per current 

state, in which the warehouses and plants maintain a 1:1 relationship. The model recommends that the 

network should fulfill the six plants’ demand with their six on-site warehouses, six LCs, and three 3PLs 

(3PL1, 3PL5, and 3PL10), reducing the number of facilities from 26 warehouses to 15 warehouses. Table 2 

displays the costs with the optimized supply chain network compared to the baseline model. It is 

noteworthy that the baseline model for validation was computed only for the year of 2022; here and for 

all scenarios we present the baseline model based on demand which is modeled as the maximum 

throughput supply over the last five years, as explained in Section 3.3.3.  The optimized supply chain 

network has about $1.4 million in savings, which is about 12% reduction in total cost, composed of 13% 

savings from fixed costs and 10% savings from transportation costs. However, we proceeded with 

evaluating the impact on the optimal solution in response to changes in the input data, such as changes 

in demand, throughput capacity, fixed costs, and transportation cost. This sensitivity analysis is 

summarized in Table 3. 
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Table 2 

Baseline Model and Scenario 1 Optimal Model Expenses 

Model Total Cost  Fixed Cost Transportation Cost 

Baseline Model $ 11,722,545 $ 9,436,364 $ 2,286,181 

Scenario 1 Optimal Model $ 10,280,900 $ 8,215,460 $ 2,065,400 

% Savings 12% 13% 10% 

Total Savings $ 1,441,645 $ 1,220,904 $ 220,781 

 

Table 3 

Scenario 1 Optimization Sensitivity Analysis 

Sensitivity 
Number 

Facilities 
Total Cost Fixed Cost 

Transportation 

Cost 

Scenario 1 Optimal Model 15 $ 10,280,900 $ 8,215,460 $ 2,065,400 

10 % Higher Throughput Capacity 12 $ 8,998,910 $ 7,486,500 $ 1,512,410 

% Savings Compared to Optimal - 12% 9% 27% 

10 % Lower Throughput Capacity Infeasible 

% Savings Compared to Optimal Infeasible 

10 % Higher Demand Infeasible 

% Savings Compared to Optimal Infeasible 

10 % Lower Demand 12 $ 8,802,030 $ 7,486,500 $ 1,315,540 

% Savings Compared to Optimal - 14% 9% 36% 

10% Higher Fixed Costs 15 $ 11,102,400  $ 9,037,010  $ 2,065,400 

% Savings Compared to Optimal - -8% -10% 0% 

10% Lower Fixed Costs 15 $ 9,459,310 $ 7,393,920 $ 2,065,400 
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Sensitivity 
Number 

Facilities 
Total Cost Fixed Cost 

Transportation 

Cost 

% Savings Compared to Optimal - 8% 10% 0% 

10% Higher Transportation Costs 15 $ 10,487,400 $ 8,215,460 $ 2,271,940 

% Savings Compared to Optimal - -2% 0% -10% 

10% Lower Transportation Costs 15  $ 10,074,300 $ 8,215,460 $ 1,858,860 

% Savings Compared to Optimal - 2% 0% 10% 

Through our sensitivity analysis, we notice that the model is robust to changes in the fixed and 

transportation costs. In addition, we detect that there is potential of an additional 12% savings if the 

throughput capacity is increased by 10% across all warehouses. Similarly, there is an additional 14% savings 

if the demand is decreased by 10% across all clusters and warehouses. However, the optimization model 

is infeasible — there is no feasible solution that satisfies all the constraints of the model while still 

optimizing the objective function — when the throughput capacity is decreased by 10% across all 

warehouses or when the demand is increased by 10% across all clusters and warehouses. The reason for 

infeasibility is that these changes result in higher demand than the throughput capacity can fulfill. This 

suggests two-fold insights: One is that the decreasing supply capacity would unable the sponsor company 

to fulfill the historic demand over last five years, which we know they fulfilled; hence, the estimation of 

supply capacity is accurate. Two is that increasing demand would unable the sponsor company to fulfill 

100% of its requests, and hence the sponsor company may need to add additional capacity at 3PLs.  

Within Scenario 1, we also investigated if the supply throughput capacity of each warehouse is 

increased due to the reduction of Deadstock inventory currently stored in each warehouse. Specifically, 

we calculated the sum of stock on hand from the 35% of Deadstock materials that represented about 99% 

of Deadstock stock value (USD), as shown previously in Figure 6. By writing-off 105,887 units of Deadstock 
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quantity, we then added such quantity to the supply capacity to each warehouse and cluster based on 

their demand proportionality. We call this Scenario 1b and its results are summarized in Table 4. The results 

from Scenario 1b further decrease the number of warehouses from 15 warehouses (Scenario 1) to 13 

warehouses. The model assesses that the network should fulfill the six plants’ demand with their six on-

site warehouses, six LCs, and three 1PLs (3PL1). The optimized supply chain network by adding the 

Deadstock quantity to the supply capacity in Scenario 1b has about $2.5 million of savings, which is about 

22% reduction in total cost (10 points more than Scenario 1). 

Table 4 

Baseline Model and Scenario 1b Optimal Model Expenses 

Model Total Cost  Fixed Cost Transportation Cost 

Baseline Model $ 11,722,545 $ 9,436,364 $ 2,286,181 

Scenario 1b Optimal Model $ 9,173,820 $ 7,497,050 $ 1,676,770 

% Savings 22% 21% 27% 

Total Savings $ 2,548,725 $ 1,939,314 $ 609,411 

 
Lastly, using the modified Inventory Square Root Law explained in Section 3.3 we calculate that 

Scenario 1b results in a reduction of safety stock from 137,935 units to 96,531units (30% decrease). Using 

a 11% holding cost (Sponsor Company, personal communication, 2022), this leads to a decrease in holding 

costs from $6,445,815 to $5,015,887— $1,429,928 savings (22%) in holding costs.  
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4.2 SCENARIO 2 

Scenario 2 assesses the most optimal network design when a warehouse can serve plants with 

the same inventory system.  The model recommends that the network should fulfill the six plants’ demand 

with their six on-site warehouses, four consolidated LCs, and three 3PLs (3PL1, 3PL5, and 3PL10), reducing 

the number of facilities from 26 warehouses to 13 warehouses (2 more warehouses are reduced compared 

to Scenario 1). Table 5 displays the costs with the optimized supply chain network compared to the 

baseline model. The optimized supply chain network has about $1.5 million in savings, which is about 13% 

reduction in total cost, composed of 13% savings from fixed costs and 14% savings from transportation 

costs. 

Table 5 

Baseline Model and Scenario 2 Optimal Model Expenses 

Model Total Cost  Fixed Cost Transportation Cost 

Baseline Model $ 11,722,545 $ 9,436,364 $ 2,286,181 

Scenario 2 Optimal Model $ 10,190,000 $ 8,215,460 $ 1,974,510 

% Savings 13% 13% 14% 

Total Savings $ 1,532,545 $ 1,220,904 $ 311,671 

We proceeded with evaluating the impact on the optimal solution in response to changes in the 

input data. This sensitivity analysis is summarized in Table 6. 
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Table 6 

Scenario 2 Optimization Sensitivity Analysis 

Sensitivity 
Number 

Facilities 
Total Cost Fixed Cost 

Transportation 

Cost 

Scenario 2 Optimal Model 13 $ 10,190,000 $ 8,215,460 $ 1,974,510 

10 % Higher Throughput Capacity 10 $ 8,946,150 $ 7,486,500 $ 1,459,650 

% Savings Compared to Optimal - 12% 9% 26% 

10 % Lower Throughput Capacity Infeasible 

% Savings Compared to Optimal Infeasible 

10 % Higher Demand Infeasible 

% Savings Compared to Optimal Infeasible 

10 % Lower Demand 10 $ 8,763,020 $ 7,486,500 $ 1,276,530 

% Savings Compared to Optimal - 14% 9% 35% 

10% Higher Fixed Costs 13 $ 11,011,500  $ 9,037,010  $ 1,974,510 

% Savings Compared to Optimal - -8% -10% 0% 

10% Lower Fixed Costs 13 $ 9,368,430 $ 7,393,920 $ 1,974,510 

% Savings Compared to Optimal - 8% 10% 0% 

10% Higher Transportation Costs 13 $ 10,387,400 $ 8215460 $ 2171970 

% Savings Compared to Optimal - -2% 0% -10% 

10% Lower Transportation Costs 13  $ 9,992,530 $ 8,215,460 $ 1,777,060 

% Savings Compared to Optimal - 2% 0% 10% 

Through our sensitivity analysis, we notice that the model is robust to changes in the fixed and 

transportation costs. In addition, we detect that there is potential for an additional 12% savings if the 
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throughput capacity is increased by 10% across all warehouses. Similarly, there is an additional 14% savings 

if the demand is decreased by 10% across all clusters and warehouses. However, the optimization model 

is infeasible — there is no feasible solution that satisfies all the constraints of the model while still 

optimizing the objective function — when the throughput capacity is decreased by 10% across all 

warehouses or when the demand is increased by 10% across all clusters and warehouses. The insights 

from infeasibility are the same as the ones discussed for Scenario 1.  

Within Scenario 2, we also investigated if the supply throughput capacity of each warehouse is 

increased due to the reduction of Deadstock inventory currently stored in each warehouse. Similar to 

Scenario 1, by writing-off 105,887 units of Deadstock quantity, we then added such quantity to the supply 

capacity to each warehouse and cluster based on their demand proportionality. We call this Scenario 2b 

and its results are summarized in Table 7. The results from Scenario 2b further decrease the number of 

warehouses from 13 warehouses (Scenario 2) to 10 warehouses. The model assesses that the network 

should fulfill the six plants’ demand with their six on-site warehouses and four consolidated LCs. The 

optimized supply chain network by adding the Deadstock quantity to the supply capacity in Scenario 2b 

has about $2.6 million of savings, which is about 23% reduction in total cost (10 points more than Scenario 

2). 

Table 7 

Baseline Model and Scenario 2b Optimal Model Expenses 

Model Total Cost  Fixed Cost Transportation Cost 

Baseline Model $ 11,722,545 $ 9,436,364 $ 2,286,181 

Scenario 2b Optimal Model $ 9,071,360 $ 7,486,500 $ 1,584,870 

% Savings 23% 21% 31% 

Total Savings $ 2,651,185 $ 1,949,864 $ 701,311 
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Lastly, using the modified Inventory Square Root Law explained in Section 3.3 we calculate that 

Scenario 2b results in a reduction of safety stock from 137,935 units to 88,118 units (36% decrease). Using 

a 11% holding cost (Sponsor Company, personal communication, 2022), this leads to a decrease in holding 

costs from $6,445,815 to $4,928,183— $1,517,632 savings (23%) in holding costs.  

4.3 SCENARIO 3 

Scenario 3 assesses the most optimal network design when the sponsor company integrates its 

inventory systems, but warehouses can transact orders and movements of MRO SKUs to only the same 

legal entities. The model recommends that the network should fulfill the six plants’ demand with their six 

on-site warehouses, two consolidated LCs, and three 3PLs (3PL1, 3PL5, and 3PL10), reducing the number 

of facilities from 26 warehouses to 11 warehouses (2 more warehouses are reduced compared to Scenario 

2). Table 8 displays the costs with the optimized supply chain network compared to the baseline model. 

The optimized supply chain network has about $1.5 million in savings, which is about 13% reduction in 

total cost, composed of 13% savings from fixed costs and 15% savings from transportation costs. 

Table 8 

Baseline Model and Scenario 3 Optimal Model Expenses 

Model Total Cost  Fixed Cost Transportation Cost 

Baseline Model $ 11,722,545 $ 9,436,364 $ 2,286,181 

Scenario 3 Optimal Model $ 10,163,200 $ 8,215,460 $ 1,947,720 

% Savings 13% 13% 15% 

Total Savings $ 1,559,345 $ 1,220,904 $ 338,461 

We proceeded with evaluating the impact on the optimal solution in response to changes in the 

input data. This sensitivity analysis is summarized in Table 9. 
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Table 9 

Scenario 3 Optimization Sensitivity Analysis 

Sensitivity 
Number 

Facilities 
Total Cost Fixed Cost 

Transportation 

Cost 

Scenario 3 Optimal Model 11 $ 10,163,200 $ 8,215,460 $ 1,947,720 

10 % Higher Throughput Capacity 8 $ 8,182,910 $ 7,486,500 $ 696,415 

% Savings Compared to Optimal - 19% 9% 64% 

10 % Lower Throughput Capacity Infeasible 

% Savings Compared to Optimal Infeasible 

10 % Higher Demand Infeasible 

% Savings Compared to Optimal Infeasible 

10 % Lower Demand 8 $ 8,089,660 $ 7,486,500 $ 603,164 

% Savings Compared to Optimal - 20% 9% 69% 

10% Higher Fixed Costs 11 $ 10,984,700  $ 9,037,010  $ 1,947,720 

% Savings Compared to Optimal - -8% -10% 0% 

10% Lower Fixed Costs 11 $ 9,341,630 $ 7,393,920 $ 1,947,720 

% Savings Compared to Optimal - 8% 10% 0% 

10% Higher Transportation Costs 11 $ 10,358,000 $ 8,215,460 $ 2,142,490 

% Savings Compared to Optimal - -2% 0% -10% 

10% Lower Transportation Costs 11  $ 9,968,410 $ 8,215,460 $ 1,752,950 

% Savings Compared to Optimal - 2% 0% 10% 

Through our sensitivity analysis, we notice that the model is robust to changes in the fixed and 

transportation costs. In addition, we detect that there is potential for an additional 19% savings if the 
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throughput capacity is increased by 10% across all warehouses. Similarly, there is an additional 20% savings 

if the demand is decreased by 10% across all clusters and warehouses. However, the optimization model 

is infeasible — there is no feasible solution that satisfies all the constraints of the model while still 

optimizing the objective function — when the throughput capacity is decreased by 10% across all 

warehouses or when the demand is increased by 10% across all clusters and warehouses. The insights 

from infeasibility are the same as the ones discussed for Scenario 1.  

Within Scenario 3, we also investigated if the supply throughput capacity of each warehouse is 

increased due to the reduction of Deadstock inventory currently stored in each warehouse. Similar to 

Scenario 2, by writing-off 105,887 units of Deadstock quantity, we then added such quantity to the supply 

capacity to each warehouse and cluster based on their demand proportionality. We call this Scenario 3b 

and its results are summarized in Table 10. The results from Scenario 3b further decrease the number of 

warehouses from 11 warehouses (Scenario 3) to 8 warehouses. The model assesses that the network 

should fulfill the six plants’ demand with their six on-site warehouses and two consolidated LCs. The 

optimized supply chain network by adding the Deadstock quantity to the supply capacity in Scenario 3b 

has about $3.0 million of savings, which is about 26% reduction in total cost (13 points more than Scenario 

3). 

Table 10 

Baseline Model and Scenario 3b Optimal Model Expenses 

Model Total Cost  Fixed Cost Transportation Cost 

Baseline Model $ 11,722,545 $ 9,436,364 $ 2,286,181 

Scenario 3b Optimal Model $ 8,678,470 $ 7,486,500 $ 1,191,970 

% Savings 26% 21% 48% 

Total Savings $ 304,4075 $ 1,949,864 $ 1,094,211 
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Lastly, using the modified Inventory Square Root Law explained in Section 3.3 we calculate that 

Scenario 3b results in a reduction of safety stock from 137,935 units to 82,320 units (40% decrease). Using 

a 11% holding cost (Sponsor Company, personal communication, 2022), this leads to a decrease in holding 

costs from $6,445,815 to $4,819,255— $1,626,560 savings (25%) in holding costs.  

4.4 SCENARIO 4 
Scenario 4 assesses the most optimal network design when the sponsor company integrates its 

inventory systems and warehouses can transact orders and movements of MRO SKUs across multiple legal 

entities. The model recommends that the network should fulfill the six plants’ demand with their six on-

site warehouses, one consolidated LCs, and three 3PLs (3PL1, 3PL5, and 3PL10), reducing the number of 

facilities from 26 warehouses to 9 warehouses (3 more warehouses are reduced compared to Scenario 3). 

Table 11 displays the costs with the optimized supply chain network compared to the baseline model. The 

optimized supply chain network has about $2 million in savings, which is about 17% reduction in total cost, 

composed of 18% savings from fixed costs and 14% savings from transportation costs. 

Table 11 

Baseline Model and Scenario 4 Optimal Model Expenses 

Model Total Cost  Fixed Cost Transportation Cost 

Baseline Model $ 11,722,545 $ 9,436,364 $ 2,286,181 

Scenario 4 Optimal Model $ 9,674,090 $ 7,718,840 $ 1,955,250 

% Savings 17% 17% 14% 

Total Savings $ 2,048,455 $ 1,717,524 $ 330,931 

We proceeded with evaluating the impact on the optimal solution in response to changes in the 

input data. This sensitivity analysis is summarized in Table 12. 
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Table 12 

Scenario 4 Optimization Sensitivity Analysis 

Sensitivity 
Number 

Facilities 
Total Cost Fixed Cost 

Transportation 

Cost 

Scenario 4 Optimal Model 9 $ 9674090 $ 7718840 $ 1955250 

10 % Higher Throughput Capacity 6 $ 8,055,240 $ 7,176,090 $ 879,145 

% Savings Compared to Optimal - 17% 7% 55% 

10 % Lower Throughput Capacity Infeasible 

% Savings Compared to Optimal Infeasible 

10 % Higher Demand Infeasible 

% Savings Compared to Optimal Infeasible 

10 % Lower Demand 6 $ 7,945,380 $ 7,176,090 $ 769,291 

% Savings Compared to Optimal - 18% 7% 61% 

10% Higher Fixed Costs 9 $ 10,446,000  $ 8,490,720  $ 1,955,250 

% Savings Compared to Optimal - -8% -10% 0% 

10% Lower Fixed Costs 9 $ 8,902,200 $ 6,946,950 $ 1,955,250 

% Savings Compared to Optimal - 8% 10% 0% 

10% Higher Transportation Costs 9 $ 9,869,610 $ 7,718,840 $ 2,150,780 

% Savings Compared to Optimal - -2% 0% -10% 

10% Lower Transportation Costs 9  $ 9,478,560 $ 7,718,840 $ 1,759,730 

% Savings Compared to Optimal - 2% 0% 10% 

Through our sensitivity analysis, we notice that the model is robust to changes in the fixed and 

transportation costs. In addition, we detect that there is potential for an additional 17% savings if the 
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throughput capacity is increased by 10% across all warehouses. Similarly, there is an additional 18% savings 

if the demand is decreased by 10% across all clusters and warehouses. However, the optimization model 

is infeasible — there is no feasible solution that satisfies all the constraints of the model while still 

optimizing the objective function — when the throughput capacity is decreased by 10% across all 

warehouses or when the demand is increased by 10% across all clusters and warehouses. The insights 

from infeasibility are the same as the ones discussed for Scenario 1.  

Within Scenario 4, we also investigated if the supply throughput capacity of each warehouse is 

increased due to the reduction of Deadstock inventory currently stored in each warehouse. Similar to 

Scenario 3, by writing-off 105,887 units of Deadstock quantity, we then added such quantity to the supply 

capacity to each warehouse and cluster based on their demand proportionality. We call this Scenario 4b 

and its results are summarized in Table 13. The results from Scenario 3b further decrease the number of 

warehouses from 9 warehouses (Scenario 4) to 6 warehouses. The model assesses that the network should 

fulfill the six plants’ demand with their five on-site warehouses and one consolidated LCs. The optimized 

supply chain network by adding the Deadstock quantity to the supply capacity in Scenario 4b has about 

$3.2 million of savings, which is about 27% reduction in total cost (10 points more than Scenario 4). 

Table 13 

Baseline Model and Scenario 4b Optimal Model Expenses 

Model Total Cost  Fixed Cost Transportation Cost 

Baseline Model $ 11,722,545 $ 9,436,364 $ 2,286,181 

Scenario 4b Optimal Model $ 8,534,190 $ 7,176,090 $ 1,358,100 

% Savings 27% 24% 41% 

Total Savings $ 3,188,355 $ 2,260,274 $ 928,081 
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Lastly, using the modified Inventory Square Root Law explained in Section 3.3 we calculate that 

Scenario 4b results in a reduction of safety stock from 137,935 units to 72,120 units (48% decrease). Using 

a 11% holding cost (Sponsor Company, personal communication, 2022), this leads to a decrease in holding 

costs from $6,445,815 to $ 4,708,457— $ 1,737,358 savings (27%) in holding costs.  

The overall cost comparison between each scenario and the baseline is presented in Figure 12. As 

expected, Scenario 1 has an 11% estimated total cost reduction compared to the baseline while Scenario 

4b has an 27% estimated total cost reduction compared to the baseline. 

Figure 12 

Total Cost Comparison Between ach Scenario and Baseline 
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5.0 DISCUSSION 

In this chapter, we present an analysis of the optimal network design and provide 

recommendations on the implementation strategy. The network optimization model produced several 

scenarios that were evaluated based on a set of performance metrics. Based on the results, we have 

identified the optimal network design that balances costs, service levels, and capacity constraints. The 

recommendations in this chapter consider the feasibility of implementing the optimal network design, 

including the risks and limitations associated with the proposed strategy. 

5.1 RECOMMENDATION 

Analyzing the results of each scenario, we recommended that the sponsor company implements 

the most optimal network design in phases. Implementing the supply chain network in phases can help 

reduce the overall risk by breaking down the project into smaller, more manageable chunks. This approach 

allows teams to focus on one phase at a time, reducing the chance of errors and unexpected problems. 

Additionally, implementing by phases can help improve optimization by allowing organizations to focus on 

optimizing each phase before moving on to the next. This approach also ensures that the supply chain 

network is optimized to meet current needs and can adapt to changes in demand. Lastly, it allows 

stakeholders to see progress and provide feedback throughout the process, and helps build trust and 

confidence in the project team. 

The first phase is to implement the prescribed model from Scenario 2 while working to increase 

the capacity of the warehouses by writing off the 35% of the Deadstock materials that have a total stock 

on hand of 105,887 units. This can potentially result in a more resilient supply chain, in which the 

warehouses have a supply capacity buffer, which allows them to be responsive to demand as the company 

moves from 26 warehouses to 13. We recommend this model for Phase 1 because the company has 

opportunity already to consolidate W004 and W005 LCs into one LC and W003 and W006 into another LC, 

as they have the same inventory system and legal entities. 
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The impact from implementing Phase 1 is three-fold: One, there is an estimated annual reduction 

of $1.5 million from warehouses fixed costs and transportation costs. Two, there is an estimated annual 

reduction of $1,421,152 from safety stock costs. Three, there is a one-time write-off stock value savings of 

$80.9 million. 

The second phase is to implement the prescribed model from Scenario 2b by reducing the number 

of warehouses from 13 to 10. This can potentially enable the company to further decrease their 

warehouses’ fixed costs and transportation costs by another estimated annual $1.1 million and $96,480 in 

safety stock holding costs.  

The third phase of the supply chain network implementation involves reducing the number of 

warehouses from 10 to 8 in accordance with the prescribed model from Scenario 3b. This reduction can 

potentially be facilitated by the integration of inventory systems across all warehouses and plants. Given 

that the sponsor company has communicated ongoing efforts to achieve such integration, we propose a 

phased approach to implementation. Specifically, we recommend beginning with Phase 1 and 2, deferring 

Phase 3 until after the completion of the integrated system. This approach can potentially enable an 

iterative implementation process, with each phase providing opportunities to learn and make adjustments 

before moving to the next phase. In turn, this can potentially help mitigate the risks associated with 

directly reducing the number of warehouses from 26 to 8.  

The fourth, and last, phase is to implement the prescribed model from Scenario 4b by reducing 

the number of warehouses from 8 to 6. This can potentially enable the company to consolidate inventory 

into one LC, which further decreases the safety stock by approximately 10,200 units. By the end of Phase 

4, the sponsor company would have reduced a total of 65,800 units compared to the current state. This 

results in a total safety stock holding cost savings of $1,737,358 (27% from current state). 
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Figure 13 illustrates the optimal warehouses to use in the network and which warehouses to close for 

Phase 4, in blue and light grey, respectively. It also shows, through a link, the assignment of the 

corresponding inventory allocation between each warehouse and plant. The link contains a number label 

to identify the cluster and the supply to fulfill demand from warehouse to plant in Table 14. For example, 

the link (7) between W001 to plant 001 indicates that 001 is served by warehouse W001 with a supply of 

11,192 units for Cluster 0; a supply of 3,752 units for Cluster 1; a supply of 299,493 for Cluster 2; and a 

supply of 78,240 units for Cluster 3. 

Figure 13 

Phase 4: Scenario 4b Optimized Supply Chain Network  
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Table 14 

Phase 4: Scenario 4b Optimized Supply Chain Network Inventory Allocation (units) 

Label Cluster 0 Cluster 1 Cluster 2 Cluster 3 

1 416 1459   

2 7965 11456 863 6240 

3 1468 4225  3502 

4 1540  2492 2601 

5 3499 849  1775 

6 8893 10347 20389 10897 

7 11192 3752 299493 78240 

8   588  

9   5257 940 

10 9885 12176 9774 28726 

11   3953  

12 15357 3500 247504 30244 

13 8250 8250 23962 11345 

14  2756   

15 984 20476 4108 1492 
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5.2 RISKS  

In today's fast-paced business environment, companies are constantly seeking ways to optimize 

their supply chain network to improve efficiency, reduce costs, and enhance customer service, which in 

our case are internal requests. One of the strategies that we observe is that our sponsor company is 

considering closing warehouses. However, before making any decisions, it is important to carefully 

evaluate the potential risks. By taking the explained factors below into account, companies can make 

informed decisions that can potentially help them achieve their supply chain objectives while reducing 

risks and costs. Noteworthy, there may be other unanticipated risks not listed in this paper that need to 

be thoroughly investigated. 

Implementation Costs: Closing warehouses may require significant investment in IT systems, 

processes, and equipment to ensure that the remaining warehouses can handle the increased demand. 

This can result in higher implementation costs and longer lead times.  

Inventory Management Challenges: When warehouses are closed, it can be more difficult to 

manage inventory levels and ensure that the right parts and equipment are in the right place at the right 

time. This can lead to excess inventory in some locations and shortages in others. 

Supplier Management Challenges: Closing warehouses may require a reevaluation of suppliers 

and can impact existing contracts and relationships. This can result in increased lead times, higher costs, 

and reduced service levels if suppliers are not able to meet the new demand patterns. 

Inventory Characteristics Challenges: Our model assumed all SKUs can be stored in all warehouses 

presented as options in our supply chain network. However, there is risk that a particular SKU can only be 

stored in one specific warehouse, such as at a 3PL location, due to its heavy and bulky characteristics. 
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5.2 LIMITATIONS 
The first limitation in our model is that we calculated demand as the maximum historic demand 

over the last five years for each plant-material combination. The reasoning is two-fold: One is that 

considering the maximum historic demand would result in a prescribed model that is very risk-averse and 

maintains high service levels, which were requirements from the sponsor company. Two is that the data 

received was aggregated at the yearly level, and thus it was hard to identify a demand distribution by 

material. However, this limitation may lead to a suboptimal network when considering the variability of 

demand. Therefore, we suggest a future study that incorporates demand variability as a scenario in the 

objective function from our mathematical formulation (equation 1 in Section 3.3) that considers the 

probability of the demand scenario.  

The second limitation in our model is that we calculated capacity as the maximum throughput 

over the last five years and divided it by the average utilization rate of each warehouse. Although we 

received the warehouse dimensions, we did not have the material dimensions. Thus, we could not 

compute the space capacity for each warehouse. This limitation may lead to overestimation or 

underestimation of capacity in certain warehouses, which can affect the optimal design of the supply chain 

network. In addition, the assumption of a constant utilization rate may not accurately reflect the variability 

in demand and utilization patterns over time. This may lead to suboptimal capacity allocation decisions, 

which can negatively impact the overall performance of the network. Future research could explore 

alternative methods for calculating warehouse capacity that consider more detailed information on 

material dimensions and demand variability and consider dynamic adjustments in capacity allocation over 

time. This would enable a more accurate representation of the supply chain network's capacity and 

improve the quality of the optimization results. 

The third limitation in our model is that we did not have supplier inbound data, such as distances, 

transportation cost, and lead times. The lack of inbound cost data can lead to inaccurate cost estimates 
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for the transportation of MRO inventory. This can have an impact on the overall cost of the system and 

may result in suboptimal decisions being made. Future research could explore methods for obtaining and 

integrating supplier inbound data into the supply chain network optimization model, which would enable 

more accurate cost estimates and lead time calculations and facilitate the identification of more optimal 

transportation routes and modes. 

The fourth limitation in our model is that it did not have inventory management as part of the 

optimization. The reasoning was that it was out of scope for our project since our sponsor company is 

already working on establishing an inventory management system from a software company. Nonetheless, 

it is noteworthy that without considering inventory policies, our mathematical model may result in 

suboptimal inventory levels, which can lead to stockouts or excess inventory. The problem of determining 

the optimal inventory levels and order quantities for each facility is critical in ensuring that the overall 

system operates efficiently; without considering inventory policies, the facility location problem may not 

provide accurate results. Future research could explore the integration of inventory management policies 

into the supply chain network optimization model to improve the overall performance of the system. This 

could involve the development of mathematical models that consider inventory holding costs, order costs, 

and demand variability, among other factors, to determine the optimal inventory levels and order 

quantities for each facility. 
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6.0 CONCLUSION 

In oil and gas companies, operational disruptions can result in not only millions of dollars in losses but 

also negative environmental consequences. To mitigate these risks, companies tend to maintain high levels 

of Maintenance, Repair, and Operations (MRO) inventory. A 2022 study by a consulting firm revealed that 

our sponsor company was underperforming in inventory management compared to its competitors, 

prompting the company to explore ways to reduce MRO inventory holding costs. We sought potential 

solutions by identifying which components of holding costs can potentially be reduced by implementing 

an optimization model to redesign the network of plants and warehouses. We hypothesized that an 

optimized network would allow the sponsor company to break the 1:1 warehouse-to-plant relationship 

and avoid individual inventory management for each plant. We expected that an optimized network can 

lead to a reduction in holding costs and potentially enable the company to consolidate its inventory. In 

that context, we investigated three research questions: 

1. Is the current network design of our sponsor company the most cost-efficient? 

2. How can our sponsor company redesign their MRO inventory network to reduce holding costs 

while maintaining target service levels? 

3. How can our sponsor optimally allocate inventory within the recommended network? 

To address the research questions, we executed a four-step methodology: One, we conducted 

comprehensive data cleaning and analysis, including plant demand and warehouse throughput to 

accurately model the current network design. Two, we segmented 19,153 SKUs into four clusters using k-

means machine learning algorithm based on their demand characteristics. Three, we formulated and built 

a network optimization model that links the warehouses to plants by minimizing fixed and transportation 

costs and allocates the SKU clusters. Fourth and last, we estimated the safety stock reduction by reducing 

the number of warehouses and consolidating inventory. 
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For our optimization model, we formulated a Mixed Integer Linear Programming (MILP), with the 

objective of minimizing inventory holding costs components, including lease fees, maintenance fees, 

equipment fees, third-party fees, and contract labor costs, as well as the transportation costs of shipping 

one unit from a specific warehouse to a specific plant. The model generated three primary 

recommendations: which warehouses to retain and which to close; which specific warehouses should 

serve specific plants; and how much inventory by cluster should be allocated in each warehouse to fulfill 

the plants’ demand. Constraints considered included throughput capacity, plant demand, existing lease 

agreement of the Logistics Center (LC), and other constraints such as binary and integer constraints. 

We evaluated four main scenarios, each complemented with a sub-scenario that wrote off deadstock 

to increase warehouse throughput capacity. The key findings that allowed us to answer the research 

questions were as follows: 

1. The current network design has opportunity for improvement. Even in the most conservative 

scenario maintaining a 1:1 relationship, the model suggests reducing the number of warehouses 

from 26 to 15, resulting in approximately $1.4 million in savings (a 12% reduction in total cost). 

Moreover, increasing warehouse throughput capacity by writing off deadstock further improves 

savings in warehouse expenses and transportation costs. 

2. Integrating inventory systems and legal entities results in higher savings compared to a 

decentralized network. For example, a 1:1 optimal solution yields 12% savings in total cost, 

whereas a fully integrated system and legal entities increases savings to 17%. Writing off deadstock 

further boosts savings to 27%. 

3. Reducing the number of warehouses has a positive impact on inventory needs, with safety stock 

decreasing in all scenarios. In the most conservative scenario, the required safety stock is reduced 

by 30%, resulting in 22% savings in holding costs. In the most ambitious yet realistic scenario, the 

required safety stock is reduced by 48%, yielding 27% savings in holding costs. 
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We conclude that the current network design is not optimal and that integrating inventory systems 

and legal entities can potentially enable the sponsor company to save on warehouse expenses, 

transportation costs, and inventory holding costs associated with safety stock. We recommend 

implementing the optimal network in phases, progressing from Scenario 1 to 4b (described in Sections 4.1 

through 4.4), to reduce the risk of implementation failure due to complexity or uncertainty. Each 

subsequent phase can build upon the previous one.  

Future research or projects on this topic could include incorporating demand variability into the 

objective function of a mathematical formulation to consider the probability of the demand scenario and 

avoid a suboptimal network. Another project we recommend is to explore alternative methods for 

calculating warehouse capacity based on detailed information on material dimensions. This would enable 

a more accurate representation of the supply chain network's capacity and improve the quality of the 

optimization results. Additionally, research could be conducted on obtaining and integrating supplier 

inbound data into supply chain optimization models to improve cost estimates and transportation route 

planning. Finally, integrating inventory components into the model could provide more accurate estimates 

of safety stock savings. 

Through this study we described the importance of segmenting the vast MRO inventory that they hold 

based on their demand characteristics and design a supply chain network to consolidate such inventory. 

We believe these findings are relevant not only to our sponsor company or other Oil & Gas companies, 

but also to other utilities including power and pipelines. We encourage researchers or professionals who 

review our analysis to view our study and MILP model not just as a way to lower costs, but also as a decision 

support tool to facilitate future enhancements in processes. 
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APPENDICES 

Appendix A 

Table A1 

Data Dictionary for Stock List Data 

Column Description 

Plant Refinery or chemical plant code 

Material MRO SKU number 

Bin/Batch 

Indicates that the SKU is in the Logistics Center if it starts with the letter “T”, 

or that the SKU is stored in a 3PL if the it contains the name of the 3PL, or 

else is stored in the onsite warehouse of the plant associated with the SKU. 

Movement Frequency Description of the usage of the product over a time period 

Category Family High-level description of the product 

Creation Date The date when the material was created in inventory system 

UoM Material quantity unit of measurement 

Planned Delivery Time Lead time between order placement and receipt of order at warehouse 

Safety Stock 
amount of inventory that a company holds in excess of its normal inventory 

needs 

SOH Stock on hand at time of report 

Stock Value (USD) The dollar value of SOH 

Year1 GI Qty Year 2018 shipment quantity 

Year2 GI Qty Year 2019 shipment quantity 

Year3 GI Qty Year 2020 shipment quantity 

Year4 GI Qty Year 2021 shipment quantity 
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Column Description 

Year5 GI Qty Year 2022 shipment quantity 

 

Appendix B 

Table B1 

Data Dictionary for Off-site Data 

Column Description 

Plant Refinery or chemical plant code 

Material MRO SKU number 

Storage Bin 
Third party warehouse where the material is stored to fulfill demand of 

Plant 

 

Appendix C 

Table C1 

Data Dictionary for Site Location Data 

Column Description 

Location Warehouse or plant code 

Site Site’s name 

Type Refinery or chemical plant 

Legal Entity Site’s legal entity code 

System Site’s Inventory system 

Location Site’s City and state 

Address Site’s address 
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Appendix D 

Table D1 

Safety Stock (Units) Estimation 

Scenarios Old Safety Stock New Safety Stock % Decrease 

Scenario 1 All             137,935                    104,738  24.1% 

Cluster 0               20,709                      15,730  24.0% 

Cluster 1               49,897                      37,781  24.3% 

Cluster 2               39,127                      29,720  24.0% 

Cluster 3               28,202                      21,421  24.0% 

Scenario 1b All             137,935                      96,531  30.0% 

Cluster 0               20,709                      14,498  30.0% 

Cluster 1               49,897                      34,764  30.3% 

Cluster 2               39,127                      27,398  30.0% 

Cluster 3               28,202                      19,742  30.0% 

Scenario 2 All             137,935                    101,487  26.4% 

Cluster 0               20,709                      14,643  29.3% 

Cluster 1               49,897                      35,172  29.5% 

Cluster 2               39,127                      27,667  29.3% 

Cluster 3               28,202                      19,942  29.3% 

Scenario 2b All             137,935                      88,118  36.1% 

Cluster 0               20,709                      13,234  36.1% 

Cluster 1               49,897                      31,734  36.4% 

Cluster 2               39,127                      25,010  36.1% 

Cluster 3               28,202                      18,022  36.1% 

Scenario 3 All             137,935                      97,505  29.3% 

Cluster 0               20,709                      14,643  29.3% 

Cluster 1               49,897                      35,172  29.5% 

Cluster 2               39,127                      27,667  29.3% 

Cluster 3               28,202                      19,942  29.3% 

Scenario 3b All             137,935                      82,320  40.3% 

Cluster 0               20,709                      12,363  40.3% 

Cluster 1               49,897                      29,646  40.6% 

Cluster 2               39,127                      23,364  40.3% 

Cluster 3               28,202                      16,836  40.3% 

Scenario 4 All             137,935                      90,262  34.6% 

Cluster 0               20,709                      13,554  34.6% 

Cluster 1               49,897                      32,550  34.8% 

Cluster 2               39,127                      25,615  34.5% 

Cluster 3                28,202                      18,457  34.6% 

Scenario 4b All             137,935                      72,120  47.7% 
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Scenarios Old Safety Stock New Safety Stock % Decrease 

Cluster 0               20,709                      10,601  48.8% 

Cluster 1               49,897                      25,784  48.3% 

Cluster 2               39,127                      20,572  47.4% 

Cluster 3               28,202                      14,667  48.0% 
 


