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ABSTRACT 

This capstone project evaluates the application of stochastic optimization techniques in middle-mile 

transportation planning, incorporating historical variance in transportation time and yard dwell time. 

Wayfair's current middle-mile planning process uses advanced forecasting and optimization 

techniques, but it struggles to account for the randomness and variation of the real world. To address 

this, the capstone project evaluates whether incorporating sources of variance into the optimization 

process can outperform traditional models in generating resilient transportation plans. After analyzing 

70,000 trips from January 2022 to January 2023, three significant lanes were selected to evaluate 

changes in the distributions based on day of the week, season, and carrier. For each lane, 20 simulated 

transportation plans were created using stochastic data. Results confirm that accounting for variance 

improves outcomes, showing the possibility to incorporate more realistic inputs to the transportation 

planning process. Managerial insights highlight the model's possibility to representing real-world 

scenarios, enabling informed decisions on resource allocation, route selection, and scheduling. The 

scenario-based approach balances speed and efficiency, empowering organizations to manage 

uncertainty.           
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1. Introduction 

As one of the world’s largest home goods retailers, Wayfair has built a large supply chain and 

logistics network. The e-commerce giant sells over 14 million items from more than 20,000 global 

suppliers and has two corporate headquarters to support its worldwide expansion, one in Boston and 

one in Berlin, and large satellite offices in Seattle, Austin and San Francisco. To fulfill global demand 

and drive customer satisfaction, Wayfair operates 18 fulfillment and 43 delivery centers across North 

America and Europe (Wayfair, 2023).  

Building a resilient operations network is an important part of upholding customer promises. 

The middle-mile transportation plays a key role in this execution, not only for Wayfair but for any 

business distributing products to customers. The middle-mile can be defined as the part of the logistics 

focused on freight transportation with the goal of distributing goods from stocking locations to certain 

destination facilities, from where the goods will be rerouted to final customers for the last mile 

operations (Greening et al., 2022). Wayfair’s North America middle-mile network contains a complex 

hierarchy of aggregation points, cross-dock facilities, fulfillment centers, and delivery agents.  

As a consequence of the COVID-19 pandemic, a multitude of external forces tested the 

resilience of supply chains and logistics operations in 2020 and 2021: closures of main ports, labor 

shortages, imbalance between container demand and availability, facility closures, among others. In 

this context, companies must prepare to include these relevant scenarios in their planning process. 

Wayfair faced this challenge and, as the primary motivation for this project, we focused on 

opportunities to strengthen the existing middle-mile transportation planning process in the face of 

sources of uncertainties. Furthermore, we believe that the work developed can be transferable to 

other companies and modalities of transportation that are dealing with uncertainties impacting their 

operations. 

1.1 Company Background 

Wayfair developed an e-commerce platform with more than 22 million active customers. 

According to the 2023 Investors Presentation (Wayfair, 2023), the company manages more than 14 
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thousand employees and operates a proprietary end-to-end logistics network. The logistics operations 

are one of the key factors for the company to maintain and grow their supplier network, which is 

linked to the success of the company’s products with customers. The company oversees a logistics 

portfolio comprising: 

1) Forwarding services: Ocean transport services to bring product from manufacturers 

in Asia closer to customers in North America and Europe,  

2) Fulfillment operations: Positioning fulfillment center network in 16 locations in North 

America and 2 locations in Europe.  

3) Delivery network: Proprietary middle-mile and last-mile delivery service for large 

parcel products with 35 locations in North America and 8 in Europe. 

Figure 1 illustrates the process of delivering small and large parcels using the Wayfair network 

targeting consistent and reliable delivery for customers. “CastleGate” is the name of the network 

developed by Wayfair for small parcels. The acronym WND, which means warehouse and distribution, 

is adopted to represent the process for distribution for large parcels.  

Figure 1  

Wayfair Distribution Network 

 

Note: Figure 1. Delivery process adopted by Wayfair for small and large parcels. Retrieved from 

https://s24.q4cdn.com/589059658/files/doc_financials/2022/q4/2023-_-Investor-Presentation.pdf  

https://s24.q4cdn.com/589059658/files/doc_financials/2022/q4/2023-_-Investor-Presentation.pdf
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1.2 Problem Statement and Research Question 

Because of the extensive size of Wayfair’s network and customer base, the company adopts 

advanced practices for transportation planning. Their current system for planning middle-mile logistics 

involves a complex process of forecasting and optimization techniques such as mixed integer linear 

programming, dynamic programing, and local search heuristics, leveraging their large amount of well-

structured data stored in SQL and no-SQL databases. While these modern tools have allowed 

companies to build highly efficient operations plans, many companies find it difficult to adequately 

account for the true randomness of the real world in these processes (Trebilcock, 2022, 09:10). 

Wayfair is no different - the company’s models are run on point forecasts, which are single point 

estimates of its expected value, and often do not consider key aspects of variation that impact 

Wayfair’s operations. Therefore, the plans created by the model will perform optimally only if 

forecasts are accurate and there is no variation in the timing of operations. This means there is 

significant unaccounted-for risk that existing variation could disrupt the plan and cause significant 

problems. Worse, there is little to no visibility into the most disruptive forms of variance. 

For Wayfair’s middle-mile planning problem, there are two primary sources of variation: 

facility operations (yard times, and loading and unloading time) and driving time between facilities. 

To mitigate potential risk, Wayfair takes a conservative approach to planning, adopting measures to 

leave space or extra time in case there are issues. While this is an effective solution, it decreases the 

optimality of the plan, leading to lower truck utilization and higher dwell times, and drives up costs in 

an already low-margin industry. 

The sources of variation described by Wayfair can be incorporated into the transportation 

planning process using probability distributions. Significant research has been conducted on 

techniques to account for the probability distributions of inputs while solving optimization problems 

more precisely. These techniques include stochastic and robust optimization, simulation and scenario 

testing, and reinforcement learning. While these methods have been thoroughly studied in academic 
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contexts, many companies have found them difficult to implement as it requires extensive expertise 

in the subject and a high computational budget. 

In this capstone project, we answer the following research question: 

Does taking into account the two sources of variance in inputs during optimization outperform 

a traditional optimization model in resilient transportation plan generation?  

To answer this question, we will explore to what degree Wayfair can be more realistic in 

planning truck timing and utilization while still meeting an acceptable level of reliability. We will also 

explore how the results of the simulation compare to the current model used by Wayfair, which will 

support identifying possible blind spots or inaccurate assumptions that are used during the current 

planning process.  

1.3 Project Goals and Outcomes 

The project’s goal is to develop and use a dynamic stochastic optimization model to create 

more robust transportation plans for Wayfair. To analyze the performance of this model, we will 

compare our model to the current transportation planning approach used by Wayfair and evaluate to 

what degree the performance of this plan is improved. This evaluation will give Wayfair insights into 

how to create stronger transportation plans, deliver on customer promises, and incorporate the 

sources of variance for alignment with real-world uncertainties. To construct the model, distributions 

were created using historical data for all inputs of the linear integer programing model. The model is 

focused on Wayfair’s primary market, the United States.  

The primary hypothesis tested is whether by using the dynamic simulation-optimization 

model Wayfair can realize a positive impact on the metric “customer promise”. Customer promise is 

a key metric for Wayfair and companies in the e-commerce space, though cost and speed are good 

proxies for this metric. This metric is based on how often Wayfair achieves the timeline that was 

communicated to the customer and can gain the ability to be more aggressive on the expected 

delivery time proposed to customers.  
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During the initial stages of the capstone, we mapped phases based on the CRISP-DM 

methodology. CRISP-DM (the Cross Industry Standard Process for Data Mining) is a framework for data 

mining projects to make it less costly, more reliable and repeatable (Wirth and Hipp, 2020).  Figure 2 

displays the steps and actions that were followed to execute the research process. The steps mapped 

under the same loop were executed in parallel or had dependencies between the phases.  

Figure 2  

Capstone Execution Phases 
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2. State of the Art 

The core problem of our capstone is how Wayfair can take into consideration sources of 

variance to outperform traditional optimization models in the middle-mile transportation planning 

process. To support the understanding of the problem and decisions on the methodology, we focused 

on four areas of the literature: (1) Middle-mile transportation, (2) Resilience in transportation, (3) 

Stochastic optimization and programming, and (4) Scenario-based frameworks. 

2.1 Middle-mile Transportation 

Trucks and rail are major modalities of transport across the world. Bureau of Transportation 

Statistics figures indicate that in 2021 trucking was the most common domestic mode of transport, 

responsible for 65% of the freight weight transported domestically in the USA (BTS, 2021). The rail 

mode followed in second place, carrying around 10% of the freight weight. Among the reasons why 

trucking is leading compared to other transportation options, Crainic et al. (2021) highlights the fast 

transit time and guaranteed reliability on the expected delivery time, which directly impacts customer 

service levels. 

Among the applications of domestic freight transport in the USA, the middle-mile has gained 

importance with the emergence of e-commerce channels. According to Petroianu (2020) middle-mile 

transportation is focused on cargo moving from one facility to another observing a set of constraints, 

such as pickup and delivery times. As part of logistics operations, the middle-mile includes bringing 

consolidated shipments from receiving points to a break-up or cross-dock location, from where it will 

be rerouted for the last mile of delivery (Seaton, 2018). One of the goals of the middle-mile network 

is to distribute and allocate inventory to achieve balance of goods distributed across the network, 

positioning products closer to customers, and decreasing shipping time (Petroianu, 2020). 

Middle-mile operations are embedded in a complex network that is managed to drive 

efficiency, avoiding loading delays, and decreasing wasted drive time (Seaton, 2018). Operating these 

networks incurs significant costs. Walmart, for example, is testing driverless trucks to cut costs on the 

middle-mile, which, according to the company, is the most expensive part of the whole supply chain 
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and a huge pain point due to driver shortages (Naughton & Boyle, 2019). The pressure to reduce costs 

is mentioned by Seaton (2018), who studied the current situation of e-commerce distribution with the 

emergence of “free shipments and free returns”. Decisions on how to physically set up the network 

and evaluate risks, such as working with independent carriers or owning a fleet, are key to maintaining 

competitiveness. 

Research was also done focused on the middle-mile planning decisions. Greening et al. (2022, 

p. 3) explains that “planning models specify a path for each shipment from its origin to destination, 

either directly or through intermediate sorting facilities”. The model developed by the authors 

considered waiting times at facilities for solving consolidation network design problems and achieving 

lower costs. Companies, such as Amazon, are investing heavily in the planning process for the middle-

mile. In 2021, the company was awarded an INFORMS prize for operational research to tackle the 

challenges related to the middle-mile (Amazon, 2021). One component of Amazon’s research is 

working with optimization and machine learning models to arrive at the most optimal decisions for 

network planning and to find solutions for challenges that are inherently stochastic or unpredictable 

in nature. 

The middle-mile is a vibrant area of research that has gained increasing attention from both 

academia and companies with the current competitive scenario in e-commerce distribution. In this 

context, it becomes even more important to understand the forces that can bring disruption and 

uncertainty to the middle-mile operations.  

2.2 Resilience in Transportation 

E-commerce logistics and transportation operations are key to fulfilling delivery time promises 

and maintaining competitiveness. Transportation systems should incorporate elements of resilience 

to function optimally. In a literature review on the topic of supply chain resilience, Kochan and Novick 

(2018) mapped a framework of aspects of the definition of resilience available in the academic 

literature. As indicated on Figure 3, some aspects under the internal disruptions are present in the 

middle-mile network operations, such as the uncertain demand lead times and cost. Petroianu (2020, 
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p. 5) highlights that “one of the main difficulties of this type of routing is that trucks have to be 

allocated without the certainty of demand. This situation can lead to last minute cancellations or ad 

hoc demands that jeopardize planning.” 

Figure 3  

Supply Chain Resilience Typology 

 

Note. This figure was adapted from Kochan and Nowick (2018) to map and display the existing literature in supply chain resilience. From 

“Supply chain resilience: a systematic literature review and typological framework” (p. 845), by  Kochan, G and Nowicki, D, 2018, International 

Journal of Physical Distribution & Logistics Management. Copyright 2018 by Emerald Publishing Limited.  

 

The concept of resilience thinking in transportation was discussed by Wang (2015). The author 

classifies the disruptions that can impact a transportation system in two dimensions: frequency of 

occurrence and level of damage. Under those categories, each type of event can be mapped on to a 

classification of (1) disaster, which includes natural events such as earthquakes; (2) day-to-day 

variations, such as changes in the demand or capacity; or (3) ongoing long-term changes, such as global 

warming. The author highlights that the reliability of a network is linked to the ability of managing 

day-to-day variations.  
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Similarly, Andersson et al. (2017) states that transport systems are subject to constant 

disturbances. These disturbances can have several sources, such as traffic incidents or congestion that 

can be classified as System Killers, Catastrophic Events, Expected Risks, and Contingencies. The author 

proposes a calculation model focused on estimating the value of transport time variability. 

Uncertainty is a constant aspect under the supply chain resilience topic. In a review of existing 

literature on intermodal transportation, Delbart (2021) identified that stochastic demand and 

stochastic transit time are the most studied types of uncertainty for planning. The author suggests 

that there is a gap in the literature for studies that combine several types of uncertainty and address 

uncertainty on a strategic level.  

The concept of resilience in the context of supply chain management is well covered in the 

academic literature and comprises a range of possible events. While force majeure events are often 

associated with the discussion about resiliency, as experienced during the COVID-19 pandemic, 

studying day-to-day uncertainties is also central to support companies maintaining a competitive 

position on costs and delivery time. To incorporate these variations, we present the concept of 

stochastic optimization, stochastic programming and scenario-based frameworks. 

2.3 Stochastic Optimization 

“Stochastic optimization refers to a collection of methods for minimizing or maximizing an 

objective function when randomness is present” (Hannah, 2015, p. 1). The goal of stochastic 

optimization is to optimize some decision problem while sufficiently accounting for uncertainty in the 

problem’s specification. Just as there is no “one size fits all approach” to solving deterministic 

optimization problems, a huge number of techniques are in use for solving these stochastic 

optimization problems depending on the structure of the problem being solved. Research into this 

problem includes “stochastic control, dynamic programming (Markov decision processes), stochastic 

programming or robust optimization, with a variety of related fields using names such as 

reinforcement learning, approximate dynamic programming, and stochastic search” (Powell, 2016, p. 

1459). 
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This set of techniques has already been applied to the transportation space. So far, most 

research into this space covers the problem from the perspective of minimizing the risk due to the 

disruption caused by environmental disasters such as earthquakes, floods, and hurricanes (Sabouhi, 

Bozorgi-Amiri & Vaez, 2021). However, these models are closer to robust optimization, where the goal 

is to minimize the impact of disruption in even the worst case, rather than Stochastic Optimization, 

where low probability events are only given small weights, generally leading to less conservative plans 

(Maggioni, Potra & Bertocchi, 2017). The only paper we could find that directly dealt with intermodal 

transportation planning with uncertainty was Baykasoğlu and Subulan (2019), which introduces a 

fuzzy-stochastic mixed-integer program for a complex, multi-objective transportation planning 

problem. We evaluate this second strategy for considering uncertainty in optimization models in the 

next section. 

2.4 Stochastic Programming 

The approach used in Baykasoğlu and Subulan (2019), and a generally common academic 

approach for solving these stochastic optimization problems for discrete operations problems, is a 

two-stage stochastic integer programming model. As the name implies, this technique involves 

breaking the problem into two stages, which are solved independently. The first stage is solved purely 

deterministically, without information on the uncertainties of the inputs. The uncertainties are then 

realized, and the second stage applies some corrective actions to the solutions found in the first stage 

(Birge & Louveaux 2011). While this technique has been successful in academia, there are significant 

difficulties in applying this technique to the large-scale problems seen in industry. Specifically, the 

evaluation of costs in the second stage introduces challenges such as the requirement to integrate the 

value function of the integer program, solving many NP-hard integer programs, and creation of non-

convex or discontinuous second stage programs (Ahmed, 2010). While this technique offers an 

interesting framework for solving our problem, there is considerable risk that it will not scale to the 

dozens of facilities and thousands of lanes that our problem involves. As a more scalable concept to 

address uncertainty, we will explore the scenario-based frameworks option in the next section.  
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2.5 Scenario-based Frameworks 

A scenario-based framework is a methodology for sampling probability distributions and 

evaluating the performance of optimization models across those scenarios: “This heuristic 

methodology also allows us to overcome the typical problem of computational intractability of ARC 

[stochastic optimization] and can be applied to any optimization problem affected by uncertainty.” 

(Maggioni, Potra & Bertocchi 2017, p 7). By considering a finite set of realized scenarios of our random 

events, we can approximate the results of a two-stage stochastic problem without the challenges 

described above. 

This strategy yields many benefits. First, it directly addresses the potential computational 

infeasibility of modeling the problem through other stochastic optimization techniques. Second, it 

allows for a custom balance between stochastic programming and robust optimization by allowing the 

user to choose the weights of scenarios to either hedge more against risk or save costs by optimizing 

for more likely events. Finally, the technique can be used regardless of the formulation of the 

underlying optimization model, requiring only an evaluation function and leaving the rest of the model 

a black box (Maggioni, Potra & Bertocchi, 2017). This means the methodology has maximum 

applicability to other types of operations problems and the solution explored in this Capstone can be 

transferable to other companies facing a similar problem. 

Overall, there is a wide range of techniques and methodologies to incorporate uncertainty 

into the middle-mile planning processes. It is clear that this facet of operations is critical for a company 

to achieve business goals related to customer satisfaction and costs and highlights the importance of 

creating a resilient plan. In the methodology section, we explain the rationale behind our decision to 

create a model that incorporates uncertainty aspects for Wayfair’s transportation planning processes.  
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3. Methodology 

After reviewing the literature and recognizing the practical challenges of implementing 

traditional stochastic optimization techniques at scale, we determined that the best approach for 

solving this problem for Wayfair was not to redesign the existing optimization models for solving 

transportation problems, but to use a scenario-based framework to leverage the work from previous 

research. Implementing this framework involved sampling the distributions of the uncertain inputs 

and repeatedly solving the optimization problem with their realized values. 

We began by analyzing the data set available at Wayfair, including the distribution, average, 

mean and range. As a next step, we applied the Kolmogorov-Smirnov test to understand whether 

there was a variance in the distribution based on certain criteria, namely lane, day of the week, and 

season. Next, we used the Wayfair simulation model to apply the scenario-based framework and 

understand the outputs. Finally, to provide Wayfair with a solution that can be applied to their 

business context, we designed a framework to interpret results. Figure 4 displays a summary of the 

methodology chapter and process adopted. 

Figure 4  

Methodology Overview 
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3.1 Data Collection and Preparation 

As focus on day-to-day variance was not yet applied to Wayfair’s optimization model, the first 

step was to understand the data to identify relevant aspects that could be part of the simulation 

model. Wayfair’s data presented overall good quality with few outliers. As our work is focused on 

operations under normal conditions, we chose to eliminate extreme outliers. In a logistics network, 

the outliers can represent the consequences caused by extreme events such as severe weather. Those 

conditions are not part of this research; for this reason, we removed all data points below or above 

the 95% quantile for the selected sources of variance.  

After cleaning the data, we created visuals illustrating each possible source of variance. We 

built charts to help understand the distribution and whether the impact has statistical significance 

using the Kolmogorov–Smirnov test. According to Grall-Maes (2012), statistical goodness of fit tests 

identifies discrepancies that are observed between sample values and the values expected in the 

model. It can be used to test whether an observed sample follows a distribution. The author describes 

the Kolmogorov–Smirnov test as a widely used test to evaluate the equality of continuous one-

dimensional probability distributions. 

3.2 Data Description 

Wayfair has a large amount of data available that can be explored on different levels. To 

perform the analysis, we extracted information for each transportation leg executed during the last 

13 months. In total, we had approximately 70 thousand rows of data representing the executed 

movements. For each movement, Wayfair had 110 dimensions with detailed information on several 

aspects related to the plan and execution. We started the data analysis process by selecting the 

relevant dimensions, cleaning the data, removing outliers, and conducting exploratory analysis to 

understand the main sources of variance. 

Due to the extensive and detailed number of fields available in the Wayfair dataset, we 

selected the most relevant and reliable columns. The decision was based on the importance the field 

has for transportation. After filtering out fields that were less relevant, we selected 52 dimensions to 
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characterize each movement and provide information on the possible sources of variance and day-to-

day disruptions. 

In addition, the travel time was calculated based on the information from the data set. We 

added as a new field, number 53, to provide the information on hours spent between pick up time 

and arrival time. 

3.3 Data Cleansing 

After understanding the data and assessing the overall data quality, we concluded that the 

data set required only a few steps to be ready for analysis. As a first step, we removed any rows that 

had departure dates before 2020 and arrival dates after 2024. As the database only covered the last 

13 months, dates before or after those periods of time were likely to be an error. As a second step, 

we proceeded to address the outliers. As the purpose of the project is to identify and propose 

transportation plans under normal operational conditions, we opted for removing outliers. 

Considering that lanes and overall movements can be subject to extreme events that affect the 

operations, such as travel time, we considered as outliers any movements that presented travel time 

above or below the 95th percent quantile. After applying the changes, the data was ready for the initial 

analysis. 

3.4 Data Analysis: Transit Time 

Based on the lane ID, we selected one lane to be used as a pilot for understanding and 

exploring the dataset. The lane ID selected represents a lane from the West Coast to the East Coast, 

and it had more than 700 movements registered during the past 13 months. As this is a long lane, it is 

subject to several uncertainties during the transport execution.  In this section we will present the 

results of the travel time analysis for one lane. The same test was applied to all lanes available in the 

Wayfair database.  

As the travel time is an important aspect for data understanding we explored the distribution 

and differences based on day of the week, season and carrier.  
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3.4.1 Transit time distribution 

The variance in transit time is visible in the dataset and illustrated in Figure 5. For this specific 

lane, historical data registered a travel time between 70 and 309 hours. Looking at the distribution by 

month, it is also possible to identify that every month presents variations. 

Figure 5  

Transit Time Distribution 

 

3.4.2 Transit time by day of the week 

The distribution of transit time by data of the week, with Monday counted as day 0 and Sunday 

as day 6, also presents variation. The most impactful one, as illustrated in Figure 6, is the increase in 

transit time on Saturday and Sunday. We applied the Kolmogorov–Smirnov test to determine whether 

the distributions are different based on the days of the week and had the following outcome with p-

value 0.05. 



  22 

Classification: Public 

Figure 6  

Transit Time by Day of the Week 

 

Based on the test, the conclusion is that only Mondays and Tuesdays are not different from 

the overall distribution. This finding means that, for example, loads departing on a Thursday will have 

a transit time that is different from the average for the entire dataset.  

3.4.3 Transit time by season 

The transit time by season was also evaluated. The seasons were mapped as Winter (0), Spring 

(1), Summer (2) and Fall (3). The main variation is in spring, which has the lowest travel time, and 

Winter, which has the highest travel time. Fall also represents a peak season for Wayfair and similar 

businesses, which can have an impact on the performance for that lane. 

We applied the Kolmogorov–Smirnov test to determine whether the distributions are 

different based on the seasons and had the following outcome with p-value 0.05, as shown in Figure 

7. 
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Figure 7  

Transit Time by Season 

 

The Kolmogorov-Smirnov test revealed that the distributions of winter, spring, and fall are 

different compared to the overall distribution. This means that only the distribution of the transit time 

during summer is not different than the distribution of the overall dataset.  

3.4.4 Transit time by carrier 

The difference in transit time was also evaluated as displayed in Figure 8, where the bar 

represents the average transit time, and the line represents the number of trips transported by each 

carrier. As displayed in the figure, there is no relation between count of trips and average transit time. 

Which means that using a carrier using a lane very often or carrying a significant amount of cargo, may 

not lead to them becoming more efficient in their operations times on average.  

Figure 8  

Transit Time by Carrier 
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3.5 Data Analysis: Yard Dwell Time 

Based on the facility ID, we selected one location to be used as a pilot for understanding and 

exploring the dataset. The trucking yard dwell time, which is explored in this sub-chapter, refers to 

the period that a truck spends within a designated yard or terminal before its cargo is unloaded, 

loaded, or transferred to another mode of transportation. The facility ID selected represents a large 

cross-dock located on the East Coast and was selected as a top representative of broader Wayfair 

operations. 

3.5.1 Yard dwell time distribution 

The variance in the yard time is visible on Figure 9. It represents a variation in the hour’s 

frequency across the entire year as well as patterns on the monthly distribution. As a next step, we 

evaluated the distribution per day of the week, season, and carrier.  

Figure 9  

Yard Dwell Time Distribution 
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3.5.2 Yard dwell time by day of the week 

The distribution of trucking yard time by day of the week, with Monday counted as day 0 and 

Sunday as day 6, also graphically presents variation. The most impactful variation that can be seen in 

the plots is the increase in yard time on Saturday and Sunday. We applied the Kolmogorov–Smirnov 

test to determine whether the distributions are different based on the seasons and had the following 

outcome with p-value 0.05. The results are shown in Figure 10.  

Figure 10  

Yard Dwell Time by Day of the Week 

 

According to the Kolmogorov-Smirnov test, the distribution for Monday, Saturday and 

Sundays is statistically different compared to the overall distribution. This means that the dwell 

distribution for a truck arriving to the yard on a Saturday is meaningfully different than arriving on any 

random day. 

3.5.3 Yard dwell time by season 

The seasons are mapped as Winter (0), Spring (1), Summer (2) and Fall (3). We applied the 

Kolmogorov–Smirnov test to determine whether the distributions are different based on the seasons 

and had the outcome displayed on Figure 11 with p-value 0.05. According to the test, all seasons follow 

the same distribution regarding the yard dwell time. 
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Figure 11  

Yard Dwell Time by Season 

 

3.5.4 Yard dwell time by carrier 

As a final analysis, we visualized whether there is a difference in the trucking yard dwell time 

by the carrier that performed the movement. Figure 12 shows the difference in transit time and 

volume carried by the several carriers that had cross-dock operations at the location. The analysis also 

indicates that on average there is no relation between the number of loads executed by one specific 

carrier and the yard dwell time.  

Figure 12  

Yard Dwell Time by Carrier 

 

3.6 Linear Integer Programming Model 

The middle-mile operations planning is based on a linear integer programming model that 

considers decision variables to optimize over an objective function, subject to some constraints and 

penalty functions. 
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3.6.1 Decision Variables 

There are four groups of decision variables. The first group comprises the candidate 

movement slots, represented by ‘Movements’, which selects the vehicles that will be used. The 

decision variables in this category are non-negative integer numbers. The second decision variable 

group represents the demand key, which represents the candidate movement pairs to assign flow to 

vehicles, recognized as ‘Demand’. The variables in this category are non-negative and continuous as 

they can represent different dimensions of the demand, for example, volume. The third decision 

variable, assigned in the model as ‘Unfulfilled Demand’, relates to tracking any unfulfilled demand and 

follows the same principle, as a non-negative and continuous variable. The fourth variable, assigned 

in the model as ‘Floor’, relates to tracking failure to assign minimums based on soft floor constraints. 

This constraint is in place to consider the minimum allocation contracts that Wayfair has in place with 

its freight vendors. The variable is a non-negative integer number. 

In summary, the decision variables are: 

● X[m]: Non-negative integer decision variable indexed over candidate movement slots. 

It represents the number of trucks selected for each movement slot m. 

● A[k, m]: Non-negative continuous decision variable indexed over demand key (k) and 

candidate movement (m) pairs. It represents the flow assigned to trucks in each movement slot m for 

demand key k. 

● U[k]: Non-negative continuous decision variable indexed over demand keys (k). It 

represents the unfulfilled demand for each demand key k. 

● F[g]: Non-negative integer decision variable indexed over soft floor constraint groups. 

It represents the failure to assign the minimum number of trucks in each group g. 

3.6.2 Model Constraints  

The constraints identified by Wayfair are in place to represent the limitations and 

requirements that should be followed when applying the model. There are five constraints used in the 
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model. The first constraint is related to the decision variable ‘Movements’ and is in place to limit the 

maximum number of vehicles that are available for the movements. 

The second constraint relates to the decision variables ‘Movements’ and ‘Demand’. The 

constraints limit the amount of demand allocated to each vehicle based on the capacity of each 

possible vehicle available for the movement. 

The third constraint is related to the ‘Demand’ and ‘Unfulfilled Demand’ decision variables. It 

sums both variables to make sure that the total volume of demand is considered by the model. The 

fourth constraint tracks the compliance with the lower bound of the minimum required commitment 

that Wayfair has in place with its vendors. 

The fifth constraint is related to the ‘Movements’ decision variable and guarantees that the 

physical flow required by a vehicle will be performed. This is a precedent constraint and takes into 

consideration that when the vehicle is at point A, it must move physically from point A to point B, 

before being able to move from point B to point C. 

In summary, the constraints apply on the following: 

• Group capacity constraint: The sum of X[m] for each group of candidate movement slots 

should not exceed the upper bound for that truck group 

o Sum(X[m] for m in group) <= UpperBound for each (group, UpperBound) 

• Truck capacity constraint: The total flow assigned to trucks in each movement slot m should 

not exceed the truck capacity times the number of trucks in that slot. 

o Sum(A[k, m] for all k) <= TruckCapacity[m] * X[m] for each candidate movement slot 

m 

• Demand satisfaction constraint: The total flow assigned to each demand key k plus unfulfilled 

demand should equal the demand volume for that key. 

o Sum(A[k, m] for all m) + U[k] = DemandVolume[k] for all demand keys k 

• Soft floor constraint: The total number of trucks assigned to each soft floor group g plus the 

failure to assign minimums should be greater than or equal to the lower bound for that group. 
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o Sum(X[m] for m in SoftFloorGroup[g]) + F[g] >= LowerBound[g] for g in Soft floor 

constraints 

• Precedence constraint: The number of trucks assigned to a movement slot should satisfy 

precedence relationships. 

o LeftScalar * X[LeftM] >= RightScalar * X[RightM] for (LeftScalar, LeftM), (RightScalar, 

RightM) in Precedence constraints 

3.6.3 Penalty Function for Orders 

The penalty function is a key feature for the integer linear programming model. It defines the 

mechanism by which a trade-off between cost and speed is defined. Each lane has a single penalty 

function, which is represented by ‘Penalty Function’ and is calculated as ‘Assigned Arrival Date and 

Time’ minus the ‘Arrival Milestone Date and Time’. The property of the penalty function includes three 

considerations. 

The first consideration is that optimal solutions should send orders out as first in first out. If 

that order is not followed, the operations may not be able to execute the plan and realize the intended 

value. The goal is that the order arrives no later than the defined milestone time, without considering 

as a benefit if the order arrives much earlier than expected. 

The second consideration is the arrival windows. Each facility present in the model has a 

certain time each day where they make their delivery routes. Items that arrive after this window will 

not be sent until the following day. The model penalizes orders that arrive after the delivery window 

but is indifferent about what time the orders arrive within the time window. This penalty allows the 

model to consider for planning effects events such as weekend closures or holidays, which will have 

an impact on the time required for processing the order. 

3.6.4 The objective function 

The objective function is designed to minimize the sum of ‘Movement’ costs based on the 

chosen movement. It considers the assignment penalty for each pair of demand key ‘Demand’ and 
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candidate ‘Movement’ slot. It also calculates and attributes a penalty for the ‘Unfulfilled Demand’ and 

for assignments below the ‘Floor’ attributed for the freight vendors.  

In summary, the objective function is to minimize the sum of: 

● MovementCost[m] * X[m] for each candidate movement slot m 

● AssignmentPenalty[k, m] * A[k, m] for each pair of demand key k and candidate 

movement slot m 

● UnfulfillmentPenalty[k] * U[k] for each demand key k 

● UnderAssignmentPenalty[g] * F[g] for each soft floor group g 

3.7 Scenario-based Framework Model 

To execute the scenario-based framework simulation, we used the input of the data analysis 

and the linear integer programming model described in the methodology chapter. All variables 

identified as significantly different from the average through data analysis were incorporated into the 

model. The simulation time was set to run the linear optimization model described earlier a total of 

20 times. 

The inputs included in the model were deterministic and probabilistic data points. The 

deterministic inputs included: 

● Loads necessary to move through the network 

● Facility operating hours 

● Facility capacity and staggering constraints 

● Lanes available to move loads between facilities 

● The carrier guide, service level agreement data (SLA) and the floor commitments. 

The service level agreement (SLA) data provides valuable information regarding the agreed-

upon transit time in each lane for every carrier. This data plays a crucial role in the current model 

adopted by Wayfair as it serves as a key indicator of the expected performance in each lane.  

The probabilistic inputs included in the model, based on the distribution and statistic tests 

conducted across the selected lanes, were: 
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● Number of loads necessary to plan based on demand 

● Lane travel times 

● Inbound yard dwell time 

Once the optimization model was run on the simulated inputs to generate several possible 

transportation plans, we assessed each plan against a simulated execution for the planned window 

and evaluated the results.  
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4. Results 

This chapter provides an overview of the input data inserted to the simulation model. The 

input data is based on the probability distributions presented in the Methodology chapter. In addition, 

the chapter presents the simulation outcomes for three selected lanes, the corresponding model 

transportation plan output, and a comparison with the performance under the current model adopted 

by Wayfair. 

As selecting only one lane for the simulation could lead to bias, we decided to execute the 

simulation in three separate lanes. In the three selected lanes, we aimed to have examples covering 

conservative, optimistic and realistic planning approaches based on the service level agreements in 

place. Two of the lanes represent cross-country lanes, with long transit time, while the third lane 

represents a relatively short lane. The following subchapters will describe each lane and the outcome 

of the simulation. 

4.1 Lane 1: Pacific Coast to the East North Central Area 

For the first model run, we selected a lane that experiences a high volume of traffic and has a 

service level agreement for travel time provided by the main carrier of 110 hours. This lane stretches 

from the Pacific Coast to the East North Central Area in the United States covering around 2000 miles. 

This is a cross-country route, which makes it susceptible to several uncertainties. The carrier operating 

in this lane is identified as C1. The approximate locations are illustrated by Figure 13. 

Figure 13  

Lane 1 Representation 
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4.1.1 Simulation inputs for lane 1 

As one of the stochastic inputs used by the model, we sampled the distribution of the transit 

times for Lane 1 considering the historical data for 2022. Figure 14 shows the new values incorporated 

by the model for the stochastic input travel time in hours. The service level agreement for transit time, 

which is used in the current model adopted by Wayfair, is highlighted in the figure as 110 hours. As 

captured by the image, most values based on the stochastic distribution registered transit time above 

the service level agreement.  

Figure 14  

Stochastic Input for Lane 1 - Transit Time in Hours 

 

4.1.2 Current model for lane 1 

As a first step, we used the linear integer programming model in the same way that is in place 

by Wayfair today. This model uses the service level agreement transit time to build an optimal 

transportation plan and calculate the expected performance. The optimal plan created at this stage 

was compared with the plan generated by the simulation. The outcome of the model, as displayed in 

Figure 15, involves 30 loads for carrier 1 covering the time span of 6 days.  
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Figure 15  

Transportation Plan Based on SLA for Lane 1 

 

4.1.3 Simulation model for lane 1 

The simulation model utilized historical data of interest and incorporated the distribution 

variables for travel time and yard dwell time. Instead of using predefined service level agreement 

values, the stochastic input was employed when executing the linear integer programming model 

described in the methodology section. The model was executed 20 times, resulting in the creation of 

20 transportation plans. An example of one of these plans is illustrated in Figure 16. 
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Figure 16  

Transportation Plan Based on Simulation for Lane 1 

 

4.1.4 Comparison of current model and simulation output for lane 1 

To compare the outcomes of the models, we focused on the expected dwell time for each of 

the transportation plans created. Dwell time refers to the duration that a shipment spends in the yard 

of a facility or distribution center after it arrives but before it is unloaded or processed further. Figure 

17 illustrates the dwell time in hours using the current model adopted by Wayfair and the simulation 

results. As illustrated, the simulation model outcome suggests a higher total dwell time across all 

solutions if compared to the current model.  

The dwell time distribution on Figure 18 represents the number of hours of dwell per unit for 

the solution following the service level agreement and for one of the transportation plans created as 

an output of the simulation model. The transportation plan generated by the simulation model 

provides a more realistic overview of the expected dwell time since it incorporates stochastic inputs. 

In other words, the plans created using the service level agreement values might be overly optimistic 
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or overly favorable compared to the plans generated with the stochastic input, which takes into 

account the variability and uncertainty in travel time and yard dwell time. 

Figure 17  

Average Dwell Time by Simulation Scenario for Lane 1 

 

Figure 18  

Dwell Distribution Comparison for Lane 1 

 

4.2 Lane 2: Pacific Coast to the Mid-Atlantic Region 

Lane 2 is a high-volume lane and has a service level agreement time provided by the main 

carrier of 153 hours. This lane stretches from the Pacific Coast to the Mid-Atlantic region in the United 

States and has a travel distance of approximately 2.7 thousand miles. The carrier operating in this lane 

is identified as C2. The approximate locations are identified by Figure 19. 
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Figure 19  

Lane 2 Representation 

 

4.2.1 Simulation inputs for lane 2 

For Lane 2, we utilized the distribution of transit times based on historical data from 2022 as 

a stochastic input for the model. Figure 20 displays the updated values for the travel time in hours, 

which were incorporated into the model. The service level agreement for transit time, which is 

currently utilized by Wayfair's model, is indicated in the figure as 153 hours. Similarly, to Lane 1, most 

of the values generated on the stochastic distribution exceeded the service level agreement. 

Figure 20  

Stochastic Input for Lane 2 - Transit Time in Hours 

 

4.2.2 Current model for lane 2 

Similarly to Lane 1, we developed the transportation plan for Lane 2 taking into account the 

service level agreements in place between Wayfair and the carrier. Figure 21 illustrates the outcome, 

which entailed 14 loads for carrier 2 spanning over 6 days. 
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Figure 21  

Transportation Plan Based on SLA for Lane 2 

 

4.2.3 Simulation model for lane 2 

The simulation model analyzed the relevant historical data and used the stochastic input for 

travel time in the model for Lane 2. After executing the model 20 times, 20 transportation plans were 

created. Figure 22 provides an example of one of the transportation plans created.  

Figure 22  

Transportation Plan Based on Simulation for Lane 2 

 



  39 

Classification: Public 

4.2.4 Comparison of current model and simulation output for lane 2 

As a next step, after running the simulation model 20 times, we compared the output of the 

transportation plans. Based on the simulation model, Figure 23 illustrates the yard dwell time in hours 

using the current model adopted by Wayfair and the simulation results. As seen for lane 1, the 

transportation plan created for lane 2 based on the service level agreements has also registered a 

lower expected average dwell time. For Lane 2, some of the simulation results suggest an average 

dwell time that is more than double the value expected on the service level agreements. 

Figure 23  

Average Dwell Time by Simulation Scenario for Lane 1 

 

Figure 24  

Dwell Distribution Comparison for Lane 2 

 

4.3 Lane 3: Mid-Atlantic to the Northeastern Region 

Lane 3 is a shorter lane and has a service level agreement for travel time of 33 hours. This lane 

covers from the Mid-Atlantic to the Northeastern region in the United States and comprises the 



  40 

Classification: Public 

distance of around 900 miles. The carriers operating in this lane are identified as C3 and C4. The 

approximate locations are identified by Figure 25. 

Figure 25  

Lane 3 Representation 

 

4.3.1 Simulation inputs for lane 3 

As one of the stochastic inputs used by the model, we sampled the distribution of the transit 

times for Lane 3. Figure 26 shows the new values incorporated by the model related to the travel time 

in hours. The transit time established by the service level agreement, which is used in the current 

model, is highlighted in the chart as 34 hours. As there are two carriers operating in this lane, we 

sampled the distribution for each one of them. Unlike the distributions observed for lanes 1 and 2, the 

data points for lane 3 were mostly situated below the service level agreement.  

Figure 26  

Stochastic Input for Lane 3 - Transit Time in Hours 
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4.3.2 Current model for lane 3 

The integer linear programming model was executed based on the service level agreements 

for Lane 3. Figure 27 illustrates the simulation's outcome, which entailed 14 loads for carrier 3 and 4 

spanning over 6 days. 

Figure 27  

Transportation Plan Based on SLA for Lane 3 

 

4.3.3 Simulation model for lane 3 

The simulation model analyzed the relevant historical data and used the stochastic input for 

travel time in the model for Lane 3. After executing the model 20 times, 20 transportation plans were 

created. Figure 28 provides an example of one of the transportation plans created.  
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Figure 28  

Transportation Plan Based on Simulation for Lane 3 

 

4.3.4  Comparison of current model and simulation output for lane 3 

As a next step, after running the model 20 times, we compared the output of the 

transportation plans. Based on the simulation model, Figure 29 illustrates the yard dwell time in hours 

using the current model adopted by Wayfair and the simulation results. Unlike lane 1 and 2, lane 3 

average dwell time is lower for most of the simulation scenarios compared to the service level 

agreement.  

The transportation plan generated by the simulation model offers a more realistic perspective 

on the expected dwell time as it incorporates stochastic inputs. In contrast, the plans created using 

the service level agreement values depicted in Figure 30 might be overly pessimistic, meaning they 

could be more conservative or cautious in their estimations compared to the plans generated with the 

stochastic input. The stochastic input accounts for the variability and uncertainty in travel time and 

yard dwell time, providing a more comprehensive and reliable assessment. 
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Figure 29  

Average Dwell Time by Simulation Scenario for Lane 3 

 

Figure 30  

Dwell Distribution Comparison for Lane 3 

 

4.4 Framework for Output Evaluation 

Upon generating simulation results, it becomes critical to assess and determine the output 

that exhibits optimal performance and can best serve the company's interests. To facilitate this 

decision, we have outlined a three-stage process comprising two preparatory stages and one post-

simulation stage. 
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Figure 31  

Framework for Selecting Transportation Plans 

 

The initial stage of the proposed process involves identifying and selecting appropriate inputs 

for the simulation. It is clear by the dataset distribution that using service level agreement numbers 

as part of the transportation planning process is likely not reflecting the reality. Thus, the selection of 

input variables, such as travel time distribution and yard dwell time distribution, assumes a significant 

role in the decision-making process. By considering factors like exposure to potential disruptions and 

alterations to historical data, the company can make informed decisions regarding the input selection 

and range of historical data that should be used. 

In addition to input selection, it is essential to flag potential scenarios that may impact 

transportation planning. Even under normal circumstances, the company may anticipate mild 

disruption, such as a storm or congestion. In such cases, it is recommended to consider the impact of 

those during the planning process and select appropriate data points that accurately reflect extreme 

conditions. One example would be to utilize data points that reflect longer travel times and design 

transport plans that are suited to such conditions when anticipating mild disruptions. 

As seen on the three lanes evaluated in this capstone, it is possible to identify patterns in 

which the lane has a performance that is optimistic, pessimistic, or realistic compared to historical 

data. If these scenarios are identified, they can be incorporated in the model as indicators of potential 

bias or conservative approach for that specific lane.  
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The third stage involves making decisions based on the simulation results and selecting the 

goal. The selection of a plan must consider both qualitative and quantitative aspects. The number of 

loads and average yard dwell time per unit are directly linked to the costs incurred while executing 

the plan. Higher yard dwell time can lead to an increase in cost as units are not dispatched efficiently 

and are placed at the staging area. The number of loads also impacts the number of trucks required 

for transportation, which in turn affects costs. While carrier reliability and unfulfilled freight can affect 

delivery reliability metrics, this study did not focus on these aspects, and further research is 

recommended to incorporate them into the planning process. 
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5. Discussion 

In this capstone project, we explored the application of stochastic optimization techniques to 

middle-mile transportation planning, specifically focusing on the incorporation of variance in 

transportation time and dwell. As a starting point, we engaged in an interview with a company 

representative, followed by the analysis of historical data. Based on our findings, we formulated a 

hypothesis suggesting that variations in time and dwell are significant factors. Subsequently, we 

conducted tests to validate and confirm our hypothesis. As an outcome, our findings suggest that 

accounting for these uncertainties in the planning process can lead to improved plans, while also 

protecting the organization from potential risks. 

Our data analysis confirmed that transit time and yard dwell time distribution vary depending 

on the season and day of the week, which is crucial information for Wayfair's planning process. 

Currently, the company relies on service level agreements and point forecasts based on historical 

averages. This could lead to risk or suboptimal outcomes if average expected travel times are used for 

planning transportation. 

Because of this variance, simulation results reveal differences between the current 

transportation plan outcomes and those generated by the scenario-based model. For example, Lane 

1 shows considerably higher yard dwell times in the simulation compared to the service level 

agreement-based plan, whereas Lane 3 exhibits the opposite trend. This suggests that service level 

agreements might be overly optimistic or conservative for certain lanes. 

Our research demonstrated that stochastic optimization models are capable of capturing the 

inherent variability in transportation time and dwell, which are often overlooked in deterministic 

models. By considering these uncertainties, our approach enabled more robust transportation plans 

that better reflect real-world conditions. This is particularly important in the context of middle-mile 

transportation, where delays and unforeseen events can have significant impacts on supply chain 

performance. 
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Interestingly, the updated model did not significantly impact truck utilization or allocation 

metrics, as simulation outcomes were similar to those based on service level agreements. Further 

investigation is needed to determine the reasons for this. 

While our study offers valuable insights into the benefits of stochastic optimization for middle-

mile transportation planning, it is important to note some limitations. First, the quality of the results 

is dependent on the accuracy of the input data, such as the estimated distributions of transportation 

time and dwell. Future research could focus on improving the quality of these estimates, potentially 

by incorporating real-time data and advanced analytics. Second, the computational complexity of 

stochastic optimization models can be a barrier for practical implementation, especially for large-scale 

transportation networks. Further research could explore ways to improve the efficiency of these 

models, making them more accessible and feasible for widespread adoption. 

From a managerial perspective, we recommend that Wayfair incorporate the simulation 

approach for key lanes with critical variations. Adopting season-based expected transit times could 

lead to more accurate delivery time calculations for customers. Additionally, considering variations 

such as operations on different weekdays can be useful for internal operations planning. 
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6. Conclusion 

Within this research project, we evaluated the application of stochastic optimization 

techniques to middle-mile transportation planning, with a focus on incorporating variance in 

transportation time and dwell. Our findings reveal that considering these uncertainties in the planning 

process can lead to significant improvements in plans, while also protecting the organization from 

potential risks. While extreme situations have been studied for resilience, our research focused on the 

day-to-day variations which we observed can also have a significant impact on the performance of 

plans. 

6.1 Computational Results 

While the adoption of stochastic optimization has proven to be a valuable tool for addressing 

the inherent variability and uncertainties associated with middle-mile transportation, the state of art 

for stochastic programming and optimization indicates that models involving a large and complex 

system, such as middle-mile logistics, can become very complex. This approach can lead to potential 

computational infeasibility and solutions that are not scalable. For this reason, we decided to adopt a 

scenario-based framework, using the existing linear integer programming approach developed by 

Wayfair and sampling distributions that can be used to investigate a variety of scenarios. 

After analyzing 70.000 trips from January 2022 to January 2023, we selected three significant 

lanes and evaluated the distribution of the historical dataset. The key aspects that were evaluated 

were changes in transit time and yard dwell time depending on the day of the week, season and carrier 

performing the transport. We used the Kolmogorov-Smirnov test to identify statistically significant 

variations on the distribution, indicating which stochastic input should be incorporated in the model. 

After sampling the distributions, we ran the integer linear programming model combining the 

stochastic inputs with deterministic inputs provided by Wayfair, which included the number of loads 

to move through the network, facility operating hours, capacity constraints and carrier guide service 

level agreements. The outcome of these transportation plans was compared to the existing 

transportation plans currently in use by Wayfair. The result of the comparison provides confirmation 
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of the research question that taking into account the three sources of variance can potentially lead to 

better results. We found that the simulation outcome expected higher yard dwell time than the results 

incorporating only the average. It means that the current transportation plans might be more 

optimistic compared to reality. As a result, it can lead to a negative impact on the metric “customer 

promise”. 

6.2 Managerial Insights 

By offering a more accurate and robust representation of real-world scenarios, the model 

enables organizations to make better-informed decisions regarding resource allocation, route 

selection, and scheduling. These capabilities facilitate the development of more adaptive and resilient 

transportation plans, minimizing disruptions and associated costs while maximizing customer 

satisfaction. 

Moreover, the insights gained from our research underscore the importance of striking a 

balance between speed, efficiency, and risk management in transportation planning. The scenario-

based approach provides a comprehensive framework for understanding these trade-offs, 

empowering organizations to develop more effective strategies for managing uncertainty and 

ensuring supply chain success. 

In summary, our capstone project has revealed the significant benefits of applying stochastic 

optimization to middle-mile transportation planning, showcasing its potential for creating more 

robust, adaptive, and risk-averse plans. By embracing this approach, organizations can better navigate 

the complexities and uncertainties of today's business environment, ensuring a more resilient and 

efficient supply chain that ultimately drives competitive advantage and long-term success. 

6.3 Limitations and Future Research 

While our study has demonstrated the potential of stochastic optimization for middle-mile 

transportation planning, further research is required to overcome the limitations identified, such as 

improving input data quality and enhancing computational efficiency. Future work should also 
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explore the integration of real-time data and advanced analytics to further refine these models and 

facilitate their widespread adoption. 
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