BALANCING PRODUCT FLOW AND SYNCHRONIZING TRANSPORTATION

Jeff Bullock & Priya Andleigh

Graduate Students, Supply Chain Management Massachusetts Institute of Technology

AGENDA

STEADY FLOW TRADE-OFFS

STEADY FLOW TRADE-OFFS

AGENDA

METHODOLOGY

Transportation Savings =
$$\sum_{i=1}^{n} (s * j * p)$$

Cross-dock Savings Theory

Cross-dock Savings Theory

MIN (Steady Flow, Demand)

%

Crossdock Savings = $\sum_{i=1}^{n} Min(s, d_i) * c_s * c_e$

Excess Inventory Theory

$$\begin{aligned} \textbf{STEADY FLOW OPTIMIZATION} \\ \textbf{Excess} \\ \textbf{Inventory} \\ \textbf{Cost} &= \sum_{All periods} - \left(\begin{pmatrix} \text{Excess pallets} \\ \text{from previous} + \\ \text{from current} \\ \text{period} \end{pmatrix} * \frac{\% \text{ of truck}}{\text{truck perlevents}} & \textbf{Inventory} \\ \textbf{Inventory} \\ \textbf{represents} & \textbf{Inventory} \\ \textbf{truck per week} & \textbf{per truck per week} \\ \hline \textbf{represents} & \textbf{truck per week} & \textbf{per truck per week} \\ \hline \textbf{Pallet} & \underline{Pallet} & \frac{\text{Truck}}{\text{Pallet}} & \% & \frac{\$}{\text{Truck}} \\ \textbf{+} & -\left(\begin{array}{c} \text{Pallet} & end of \text{ truck that } a \\ end of \text{ the period} & end of \text{ truck that } a \\ end of \text{ the period} & end of \text{ truck that } a \\ \hline \textbf{Pallet} & \underline{Truck} & \% \\ \hline \textbf{Pallet} & \underline{Truck} & & \\ \hline \textbf{Pallet} & \underline{Truc$$

Total Savings = Transportation Savings + Crossdock Savings - Excess Inventory Cost

Objective Function: MAXIMIZE Total Savings Decision Variable: # of pallets on steady flow (s)

Transportation Savings =
$$\sum_{i=1}^{n} (s * j * p)$$

Crossdock Savings =
$$\sum_{i=1}^{n} Min(s, d_i) * c_s * c_e$$

Excess Inventory Cost = $\left\{\sum_{i=1}^{n} Max((e_{i-1} + s - d_i), 0) * j * h * v\right\} + \{Max((e_{n-1} + s - d_n), 0) * j * v * r\}$

Steady Flow (# of pallets/week)

AGENDA

Demand Characteristics			
Minimum (pallets/week)	28	% weeks shipped	100%
Mean (pallets/week)	37.7	COV	0.13
Std Dev (pallets/week)	4.80		
Moderate Volume, Stable SKU			

	Demand Characteristics				
	Minimum (pallets/week)	28	% weeks shipped	100%	
	Mean (pallets/week)	37.7	COV	0.13	
	Std Dev (pallets/week)	4.80			
Moderate Volume, Stable SKU					

Demand Characteristics			
Minimum (pallets/week)	9	% weeks shipped	100%
Mean (pallets/week)	27.9	COV	0.60
Std Dev (pallets/week)	16.7		
	High COV SK	U	

Demand Characteristics			
Minimum (pallets/week)	9	% weeks shipped	100%
Mean (pallets/week)	27.9	COV	0.60
Std Dev (pallets/week)	16.7		
	High COV Sk	ΚU	

Demand Characteristics				
Minimum (pallets/week)	1	% weeks shipped	87%	
Mean (pallets/week)	2.3	COV	0.52	
Std Dev (pallets/week)	1.20			
Low Volume, Not Shipped Every Week				

Demand Characteristics				
Minimum (pallets/week)		% weeks shipped	87%	
Mean (pallets/week)	2.3	COV	0.52	
Std Dev (pallets/week)	1.20			
Low Volume, Not Shipped Every Week				

FINAL OUTPUT

AGENDA

NEXT STEPS

Model Enhancements

- Data Aggregation
- Other Savings/Cost Considerations
- □ SKU Selection

م

Parameter Tuning

Analysis

- Multiple Lane Analysis
- Demand Segmentation

Processes

Update Frequency
Contract Innovation
Distribution Resource Planning (DRP)

Transportation Savings

> Replenishment Cycle Time Reduction

Steady

Flow

Bullwhip Dampening

Cross-dock

Productivity

THANK YOU!