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Summary:		Supply	chains	are	facing	increasingly	volatile	environments.	Traditional	optimization	solutions	provide	a	baseline	
understanding	for	industry	applications,	but	cost-efficient	solutions	require	a	more	robust	approach.	In	high-tech	capital	construction	
projects,	the	construction	of	facilities	requires	complex	project	schedules,	forecast	well	in	advance.	These	forecasts	are	used	to	hire	
contract	workers	of	varying	contract	lengths.	In	this	thesis,	we	develop	a	risk	integration	methodology	for	contract	workforce	hiring	
optimization,	and	explore	the	capability	of	generalizing	this	approach	for	other	supply	chain	problems.	In	the	studied	case,	a	23%	
additional	risk	coverage	was	generated	for	equivalent	cost.	
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Introduction	
Supply	chains	across	all	industries	are	currently	plagued	with	a	
problem:	is	there	a	robust	method	to	optimize	operations	by	
taking	risk	into	account?	In	this	thesis,	we	explore	a	
methodology	for	solving	one	specific	supply	chain	issue	for	our	
sponsor	company,	Intel.	This	methodology	is	then	extracted	
into	a	general	framework	that	integrates	risk	into	
optimization.	
	
High-tech	capital	construction	projects	require	complex	
project	schedules.	These	schedules	are	forecasted	well	in	
advance,	and	labor	requirements	are	derived	from	them.	The	
required	labor	must	be	contracted	and	trained	for	lengthy	
periods	of	time	before	construction	and	installation	begins.	
Due	to	the	uncertain	nature	of	project	schedules,	labor	

optimization	must	include	consideration	of	project	variance,	
or	risk.	The	problem	we	address	in	this	thesis	is	optimizing	
resource	allocation	across	forecasted	construction	schedules,	
with	consideration	of	schedule	variance.	We	also	address	the	
constraints	of	contract	labor	duration,	varying	task	types,	and	
sequential	ordering	of	tasks.	
	
Traditional	Optimization	Methods	
Traditional	optimization	methods	create	a	solution	for	the	
current,	static	case,	ignoring	risk	and	variance.	Often,	these	
solutions	result	in	higher	final	costs	due	to	underutilized	long-
term	contracts	and	expensive	replacement	workers.				
 
Methodology	Overview	
To	address	the	shortcomings	of	traditional	deterministic	
methods,	we	created	two	methods	of	risk	integration	(a	
bottom-up	and	a	top-down	approach)	via	a	simulation	model.	
The	first	step	in	simulation	was	to	determine	what	parameters	
involved	risk	(i.e.	those	that	could	change),	and	to	measure	
their	underlying	risk	distributions.	We	then	worked	to	
understand	the	risk	density	and	risk	coverage	achieved	by	the	
initial	optimal	solutions	output	from	the	simulation.		Each	of	
the	risk	integration	methods	created	a	new	set	of	headcount	
requirements	over	which	to	optimize.	These	new	
requirements	strategically	positioned	additional	headcounts	
on	the	schedule	to	exploit	longer	contracts.	The	costs	and	
coverages	achieved	were	then	benchmarked	against	those	
provided	by	traditional	solutions.	
	
Risk	Parameters	Assessment	
To	develop	a	simulation	model,	we	first	needed	a	probabilistic	
understanding	of	the	business	context.	More	specifically,	we	
needed	the:	

KEY	INSIGHTS	
1. Strategic	risk-integrated	optimization	can	result	

in	significant	cost	savings	and	better	risk	
coverage	than	traditional	optimization	methods.		

2. If	a	thorough	risk	assessment	is	performed	to	
understand	the	underlying	risk	parameters	in	the	
data,	simulation	is	a	strong	method	for	
identifying	areas	of	high	risk	density	in	supply	
chain	problems.				

3. There	is	a	maximum	efficient	point	of	coverage,	
to	which	a	static	optimal	solution	has	an	
equivalent	cost.	Additional	coverage	beyond	this	
point	will	cause	the	company	to	experience	
steep	diminishing	returns.	
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• Probability	that	individual	task	types	would	change	
location	on	the	schedule	

• Probability	of	movement	forward	or	backward	on	the	
schedule	

• Distribution	of	the	magnitudes	of	these	task	moves	
• Input	of	the	assumed	most	recent	forecast	schedule	
	
Simulation	
In	the	provided	data	sets,	scheduled	tasks	were	uniquely	
defined	by	the	combination	of	work	unit	and	type.	Under	each	
work	unit,	tasks	were	assumed	to	be	sequential,	with	a	
potential	tension	(n)	measurement	between	the	two,	and	with	
one	task	type	assumed	to	be	independent.	With	these	
restrictions,	we	created	a	model	to	simulate	possible	versions	
of	the	final	production	schedule.	
	
This	simulation	was	designed	to	perform	eight	main	tasks:	
1. Import	and	analyze	data	
2. Simulate	different	possible	schedules	
3. Optimize	each	of	the	simulated	schedules		
4. Assign	risk	coverage	values	to	each	optimal	solution	
5. Understand	the	resulting	statistics	around	risk	coverage	
6. Weigh	the	risk	coverage	impact	of	changing	the	
headcount	requirements	

7. Assign	new	headcount	requirements	by	day	based	on	
several	desired	coverage	percentages,	optimizing	the	
results	to	take	advantage	of	longer	term	contracts	

8. Output	the	optimized	sets	as	a	portfolio	of	options	
	
Mixed	Integer	Optimization	Model	
To	create	a	base	optimization	case	for	the	provided	schedules,	
we	built	a	mixed	integer	programming	model.	This	model	
output	results	where	we	could	compare	statically	optimal	
solutions	based	on	each	schedule	iteration,	as	well	as	modify	
constraints	in	order	to	compare	different	scenarios.	The	
model	contained	known	inputs,	constraints,	decision	variables,	
and	an	objective	function.	Figure	1	illustrates	one	result	from	
this	model.	

	
Figure 1. Base Optimization Overlaid on Input Schedule	

	
Coverage	Assessment	
Once	the	schedules	were	iterated	from	the	input	schedule	and	
optimized	with	the	mixed	integer	optimization	model,	we	

developed	the	risk	integration	component.	The	optimized	
schedules	were	run	against	a	set	coverage	solution	to	
determine	the	deficiencies	experienced	by	day,	and	their	
predicted	coverage	of	the	final	schedule.		
	
Then,	we	calculated	the	average	deficiencies	and	standard	
deviations	of	deficiency	experience	by	schedule,	by	day.	These	
statistics	helped	us	to	understand	which	areas	in	the	schedule	
experience	higher	variability,	and	thus	would	benefit	most	
from	strategic	handling	during	optimization.	
	
Risk	Integration	Methods	
The	goal	of	the	two	risk	integration	methods	developed	was	
ultimately	to	re-build	the	base	requirements	in	order	to	better	
exploit	the	optimization	engine’s	capabilities	in	establishing	
long-term	contracts	and	better	risk	set	coverage	in	a	cost-
effective	manner.	
	
Method	1	–	Handling	Risk	from	the	Bottom-up	
The	first	method	we	used	addressed	risk	integration	at	a	daily	
level.	For	each	day,	a	z-score	was	calculated	for	each	desired	
risk	coverage	by	determining	the	necessary	probability	value	
of	additional	coverage	as	follows:	
	

Prob=(DesiredCoverage-BaseCov)/(100%-BaseCov);	
where	BaseCov	=	coverage	achieved	by	input	schedule.	

	
This	z-score	was	applied	to	determine	an	additional	headcount	
for	each	day,	for	each	desired	coverage.	The	final	equation	for	
the	new	head	count	requirements	by	day	is	as	follows:	
	
NewHCReq_i	=	z*AvgDefStDev_i	+	AvgDefAvg_i	+BaseSched_i.	
	
Method	2	–	Handling	Risk	from	the	Top-Down	
The	second	method	we	used	addressed	risk	integration	at	a	
schedule-wide	level.	To	address	the	integration	of	risk	
coverage	on	a	schedule-wide	level,	we	first	had	to	assess	the	
coverage	achieved	by	the	base	schedule	on	its	own.	In	this	
case,	we	took	the	input	schedule	as	our	base.	This	coverage	
was	determined	by	comparing	the	input	schedule	to	the	
maximum	requirements	schedule.	This	coverage	typically	
averaged	~55-62%.	
	
Then,	the	gap	between	the	desired	coverage,	y,	and	the	base	
coverage,	x,	was	determined.	This	gap	was	taken	as	a	
percentage	of	the	desired	coverage:	
	

Gap	Percentage=(y-x)/y	
	
Once	the	gap	was	determined,	we	retrieved	the	list	of	average	
deficiencies	by	day	that	we	calculated	in	the	previous	section.	
This	gap	percentage	was	used	to	determine	the	percentile	
value	to	utilize	across	list	of	daily	average	deficiencies.	
	
Cost-Coverage	Frontier	
The	natural	result	of	covering	more	risk	is	to	incur	additional	
upfront	cost,	with	the	expectation	of	incurring	less	overall	
cost.	Thus,	the	natural	output	of	this	simulation	program	is	a	
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Cost	vs.	Risk	Coverage	Frontier. Figure	2	is	a	visualization	of	
the	portfolio	of	options	resulting	from	the	simulation.		
	
In	the	program,	we	determined	the	cost	performance	of	the	
base	optimization	as	well	as	that	of	the	risk-integrated	
solutions	provided	by	the	simulation.	These	costs	were	
calculated	against	the	test	data	set’s	“actual”	final	schedule.	In	
order	to	create	a	cost	benchmark,	we	took	the	optimal	cost	as	
the	base	cost,	and	then	added	BOH	coverage	to	any	deficiency	
that	the	proposed	schedule	had	against	the	actual	final	
schedule.	This	extra	cost	was	then	added	to	the	base	price.	
Moreover,	we	calculated	the	actual	coverage	of	each	schedule	
against	the	final	schedule.		
	

 
Figure 2. Cost Coverage Frontier Sample 

	
Generalized	Framework	for	Optimization	with	Risk	
The	methodology	used	in	this	thesis	can	be	generalized	and	used	
in	a	variety	of	settings,	as	described	in	Figure	3.	In	diverse	areas	
like	manufacturing,	customer	experience,	and	distribution,	our	
framework	can	be	applied	in	to	create	risk-integrated	solutions	
for	real-world	application.		
	

 
Figure 3. Generalized Framework for Risk Optimization	

	
Conclusion	
Risk	management	is,	without	a	doubt,	a	central	issue	in	supply	
chains	today.	While	optimization	engines	have	become	powerful	
enough	to	handle	large	problems,	companies	have	found	that	
deterministic	solutions	to	organic	problems	are	simply	not	
enough.	Using	our	methodology,	we	found	that	higher	levels	of	
risk	coverage	were	achieved	at	lower	costs	than	the	traditional	
solutions.	In	the	studied	case,	a	23%	additional	risk	coverage	was	
generated	for	equivalent	cost.	We	created	an	efficiency	frontier	
using	two	different	methods	for	risk	integration.	Ultimately,	the	
results	show	that	strategic	risk	integration	can	result	in	a	lower	
final	cost,	and	a	generalized	framework	for	risk	integration	can	be	
applied	across	many	supply	chain	problems.		
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