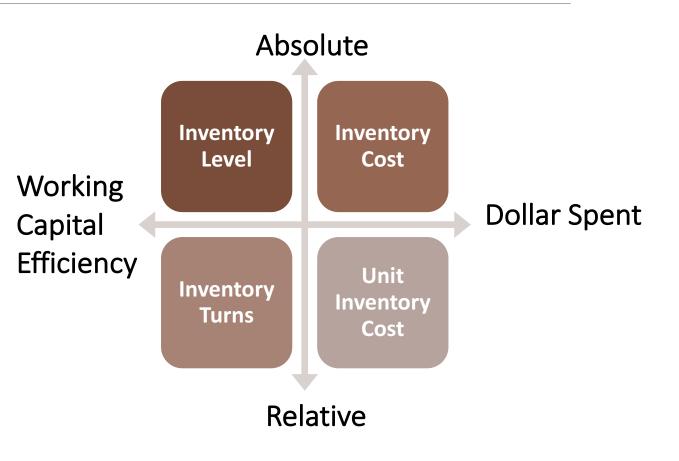


Multi-Echelon Network Evaluation and Inventory Strategy

Boxi Xu Patrick Scott MIT Master of Supply Chain Management Class of 2017

Overview

- Thesis sponsor Major global oil field service company
- Objective
 - Assess decentralized vs. centralized material supply model
 - Current Network decentralized across 30 locations
 - Proposed network centralized across 3 global distribution centers


Overview

Evaluation Metrics

- Operations Efficiency
- Cost Efficiency

Scope focus and narrowing

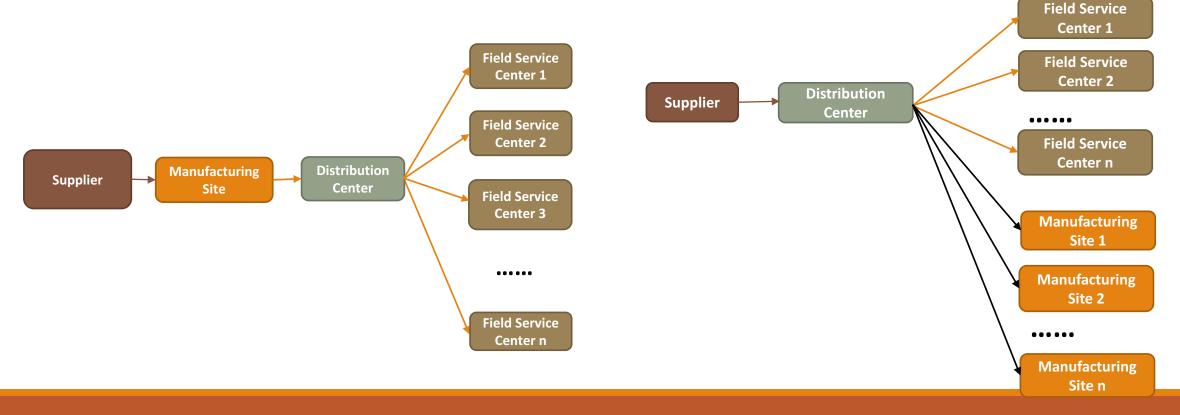
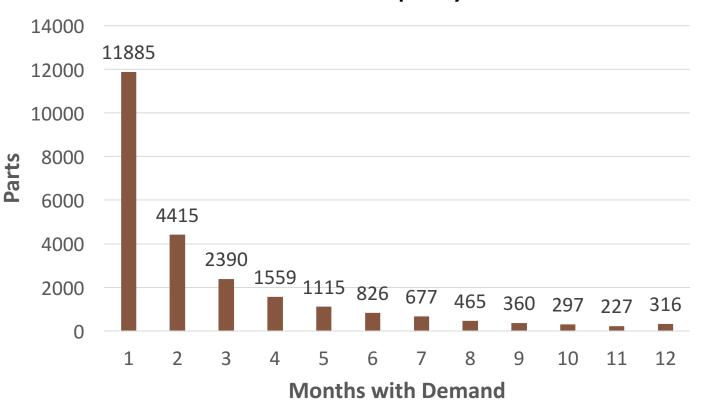
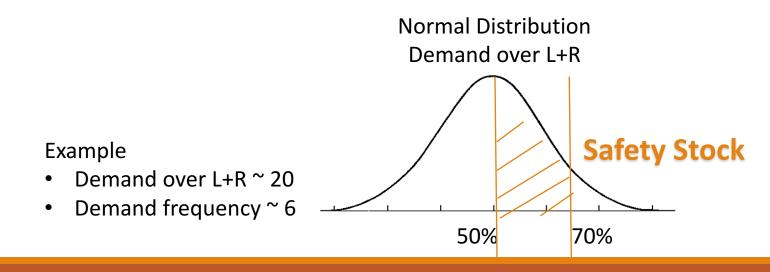

- Purchase items (85% of all materials)
- 3 main segments drilling, testing and wireline.

Illustration of current and proposed networks

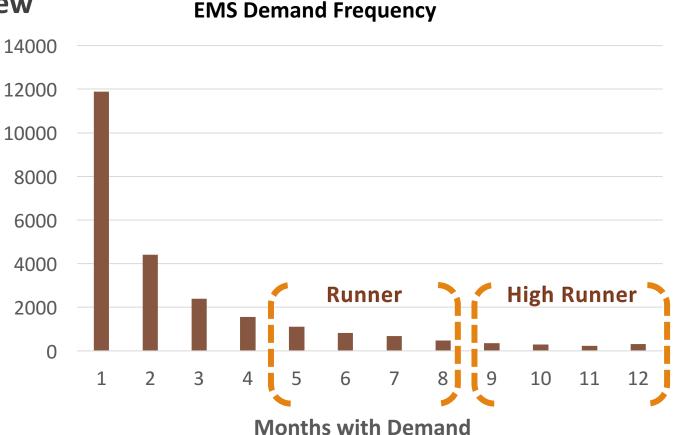

Current Network Decentralized Coordination Proposed Network Centralized Coordination

Demand Profile

Intermittent Demand

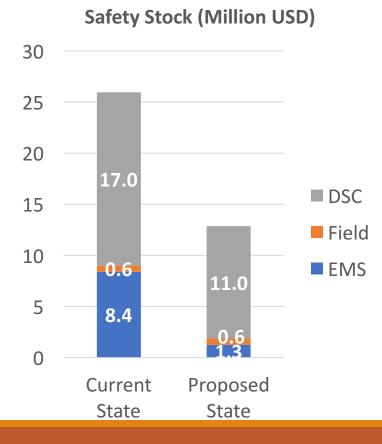

- EMS & Field Locations
- Reflects nature of manufacturing process and industry
- Probability Distribution
 - Some segments are strong candidates for Poisson distribution

EMS Demand Frequency


Method

- Model proposed mode
 - Base stock replenishment model
 - Weekly Review for replenishment
 - Total Inventory = Safety Stock + Pipeline Inventory
 - Pipeline Inventory = Average Demand / Day x Lead Time by Day
 - Safety Stock

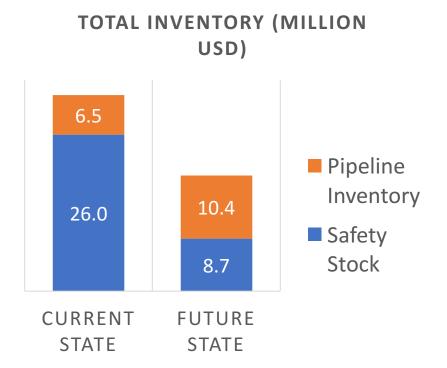
Method Inputs

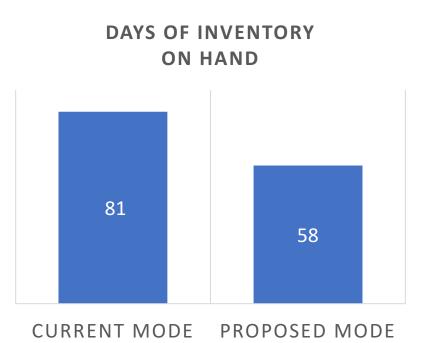

- **Distribution over lead and review** time
 - Poisson if less than 10
 - Normal if greater than 10
- **Service Level Segmentation** Parts
 - High Runner 85%
 - Runner 70%
 - Stranger no safety stock



Result – Initial Evaluation

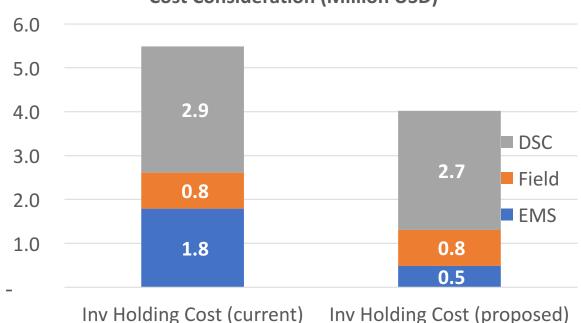
Reduction in safety stock outweighs increase in pipeline inventory





Result – Initial Evaluation

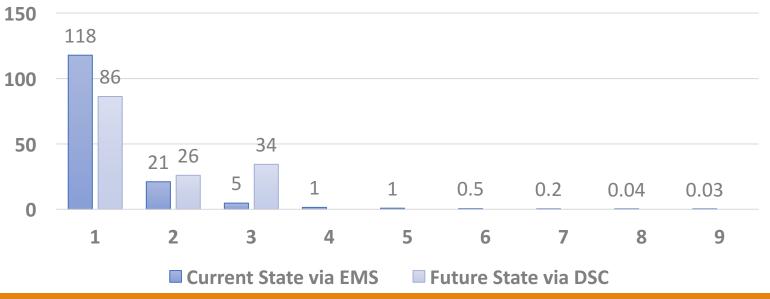
• Roughly 40% reduction in total inventory



Result – Initial Evaluation

• Managerial Cost Assumptions

- Personnel cost remains constant
- Order and Review costs remain constant
- Too good to be true?
 - Validating the model


Cost Consideration (Million USD)

Result – Discussion

- Safety stock reduction of 13.1 million USD... really ?
- Fundamental differences between the two systems
 - Level of demand aggregation

Upper Echelon Material Flow Concentration (Million USD)

Result – Discussion

- Tracking demand value
 - EMS demand (63%) vs. Field Demand (37%)
 - Average part value EMS (22 USD) vs. Field (6 USD)
- Tracking transit time

Average Internal Lead Time	Current Mode	Proposed mode
EMS part	0	18 days
Field part	28 days	7 days

Result – Compare "In-Theory"

• Model current operations

- Same approach as the proposed state
- Remove excess inventories due to inefficiencies from comparison
- Compare proposed mode with the "In-Theory" safety stock for current mode
 - Current Mode = 13.1 million USD
 - Proposed Mode = 12.9 million USD
 - Reduction is now 0.2 million USD or 2%

Result – Compare "In-Theory"

- Initial assumption of 2x slower materials coordination for proposed mode
- If the proposed mode can process as fast...
 - Proposed mode increases pipeline inventory by ^{7.0}
 0.8 million ^{6.0}
 - This is due to the longer internal transit time with EMS parts, which comprise majority demand

Pipeline Inventory (Million USD)

Conclusion

- Proposed mode could potentially reduce the safety stock by 2% (0.2 million USD), but increase the pipeline inventory by 12.3% (0.8 million USD)
- However, there is inefficiency and room to improve the current practice
 - "In Theory" safety stock is only 13.1 million compared to actual 26 million
 - Recommended further studies include:
 - Inventory policies suitable for slow and infrequent moving demand, e.g.
 Poisson distribution for extremely low demand parts
 - Cost impact of increasing use of airfreight transport

Back up Other insights

• Lead time reduction is critical

- Pipeline inv. outweighs safety stock
- Pipeline Inv. = Demand x Lead Time

Future State	Average Lead Time (days)		Average Lead Time (days)
DSC Process Time	15	EMS Process Time	7
DSC to Field	18	EMS to DSC	7
DSC to EMS	7	DSC to Field	18

• EMS consume more expensive but slow moving parts

	Avg Part Value (USD)	%High Runner	%Runner
EMS	22	9%	36%
Field	6	14%	77%

Back up Scenario Analysis 1 – Reduce Supplier Lead Time

- Safety stock reduction at upper echelon if supplier lead times are shorter
 - More reduction impact with current mode
 - Opportunity to improve current mode

Current Mode					
Lead Time Reduction	EMS Safety Stock	Absolute Reduction	% Reduction		
0%	11,077	-	_		
3%	10,810	267	2%		
5%	10,567	509	5%		
10%	10,388	689	6%		
15%	10,188	889	8%		
20%	9,938	1,139	10%		
30%	9,218	1,859	17%		
40%	8,691	2,385	22%		
50%	8,004	3,072	28%		

Proposed Mode						
Lead Time Reduction	Houston	Dubai	Rotterdam	Total		% Reduction
0%	4,087	4,124	2,772	10,983	-	_
3%	4,009	4,085	2,741	10,836	147	1%
5%	4,016	4,088	2,721	10,825	158	1%
10%	3,905	4,054	2,668	10,628	355	3%
15%	3,821	3,720	2,614	10,156	827	8%
20%	3,608	3,704	2,559	9,871	1,112	10%
30%	3,529	3,541	2,443	9,512	1,471	13%
40%	3,251	3,227	2,319	8,797	2,186	20%
50%	2,951	3,048	2,185	8,184	2,799	25%

Back up Scenario Analysis 2 − Simplify Part Stratification

• Level of safety stock variation at DSC level if part stratification changed from three buckets to two buckets

Part Stratification	HR	Runner	Stranger
Three Buckets			Demand occurs 3 months or below last year (No safety stock)
Two Buckets	ΝA	Demand occurs 6 months or above last year (Service Level 85% or 70%)	Demand occurs 5 months or below last year (No safety stock)

- Change DSC part stratification in proposed state
 - Proposed state DSC service both EMS and fields
 - Impact to DSC safety stock depends on the service level defined for runners
 - Minimum change to safety stock (+0.25%) to keep service level at high runner level (85%) for "two buckets"
- Change DSC part stratification in current state
 - Current state DSC service only fields
 - Impact to DSC safety stock depends on the service level defined for runners
 - Same level of safety stock between "three buckets" and "two buckets" if service level for runners defined at 82.5%