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ABSTRACT 

The foodservice distribution industry in the United States is projected to experience a 40% growth from 
2022 to 2025. As the industry expands, an increasing number of companies are adopting an omnichannel 
supply chain strategy. In this context, our sponsor company, a large U.S. foodservice distribution 
company, aims to optimize the end-to-end supply chain network, including omnichannel options, in order 
to minimize the overall supply chain cost. This objective is typically achieved through a technique known 
as supply chain network design, which has been extensively researched. However, while there is abundant 
literature discussing omnichannel supply chain strategies and network design, only 4% of the reviewed 
supply chain research specifically addresses B2B applications. Given the substantial differences between 
B2C and B2B businesses (e.g., lead-time requirements, network and cost structure, number of facilities 
and customers), a new customized model is required. Additionally, many previous studies have primarily 
focused on cost factors directly proportional to the volume of flows within the network, such as product 
cost, transportation cost, and warehouse handling cost. However, to achieve the most optimal solution, we 
must consider the impact of inventory positioning. Changes in inventory positioning can significantly 
influence the ability of the model to leverage inventory pooling, ultimately affecting safety stock costs. 
Since this pooling effect generally exhibits nonlinear behavior, many previous studies have either 
overlooked it or proposed separate models for network optimization and inventory positioning. To 
address these issues, we propose a mixed-integer non-linear programming (MINLP) model that 
simultaneously optimizes supply chain network flows and inventory positioning. We have solved this 
model by reformulating the square rooted term representing safety stock cost as a quadratic constraint, 
which can be solved by commercial solvers. Additionally, we have developed a tailored algorithm using 
outer approximation (OA) to expedite the solving process for our inherently complex model, known as 
NP-Hard. Depending on the specific products, our results demonstrate potential cost reductions of 3-9% 
in transportation, 2-8% in warehouse handling, and up to 50% in inventory costs. Furthermore, we have 
achieved more than nine times greater efficiency with our tailored algorithm compared to Gurobi's default 
solve. Lastly, our model exhibits the possibility of future expansion into a multi-item model, which would 
have a significantly greater impact on the company.       
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INTRODUCTION 

The trend towards omnichannel distribution, with multiple overlapping order methods and 

multiple fulfillment methods, have recently accelerated due to COVID-19. This trend has been present for 

B2C sales for over a decade, but recent research shows that B2B sales are now also permanently on a new 

trajectory towards omnichannel as well (McKinsey, 2021). B2B customers increasingly prefer flexibility 

in both how they buy and in the fulfillment options offered, inspired by what has been experienced in 

B2C. According to a 2021 report from Salesforce (2022), 72% of B2B buyers now expect “a similar 

experience on a B2B site as they get on a consumer website.” 

However, for companies used to a more traditional supply chain network design, implementing 

an omnichannel distribution network can be complex and potentially costly (Jocevksi, 2019). As 

Winkenbach et al. (2021) stated, “to address rising customer expectations with respect to delivery lead 

time, location, and flexibility… the strategic design of the underlying last-mile distribution network must 

align with the delivery service offerings and the associated omnichannel strategy.” This may include 

opening new distribution methods and, to manage cost, creating a multi-tier network. 

The sponsor for this project, a large B2B foodservice distribution company in the United States, 

is offering a comprehensive range of food-related products to diverse customers such as restaurants and 

schools through its extensive nationwide supply chain network. It is beginning to offer omnichannel 

fulfillment to customers via pilots started over the past year. While initial results have been promising, 

scaling these pilots across the United States will be challenging due to the current network design. The 

current fulfillment model ships from a vast network of local distribution sites to customers for next day 

delivery, with significant variation in product offerings, inventory policy, and fulfilment methods. 

However, customers do not actually expect all items to be delivered with the same lead time. This 

fragmentation, and the new opportunity of omnichannel fulfillment, has catalyzed our sponsor company 

to explore new network designs. 



 8 

1.1 Problem Statement and Research Questions 

Inventory positioning and fulfillment strategy at our sponsor company has been managed 

primarily in a decentralized approach, with the local distribution sites being the main determinant of 

which items to stock and which customers to serve from the different sites. However, this approach does 

not produce wholly optimal solutions. There is an opportunity to reduce total cost of fulfillment as well as 

reduce complexity of the network by considering a more holistic solution. In addition, new omnichannel 

fulfillment options are now demanded by customers, adding further complexity. Bell et al. (2014) stated 

that to win in an omnichannel world, companies must put the customer at the center of the omnichannel 

experience as well as foster cross-functional collaboration to succeed with omnichannel strategies. Taking 

this into account, this paper addresses the following questions: 

1. What is the current state of the supply chain network in terms of suppliers, item flows, 

distribution centers, customer demand, and costs? What is the current network design strategy? 

What additional fulfillment options would be possible given existing facilities? 

2.  How do customer service and lead time requirements influence the network design? 

3.  Given the input above, what is the least-cost solution to satisfy customer demand? What are the 

most significant differences between the current state and the new solution? 

4.  What would changing to the new optimized design with new omnichannel fulfillment options be 

worth? Which design elements have the greatest influence on reducing cost? 

 

1.2 Scope: Project Goals and Expected Outcomes 

The overall goal of this project is to develop a proof-of-concept strategic model that solves for a 

national-level stocking strategy under different omni-channel fulfillment options. This resulted in a tool 

that could be used across functions at our sponsor company, including: Supply Chain, Merchandising, 

Finance, and Operations. We then demonstrate features of the tool with several example items. The model 
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includes end-to-end supply chain costs such as product cost, inbound cost, warehouse handling cost, 

inventory cost, and outbound cost.  

To address the questions raised by the project, this model considers different scenarios regarding 

customer fulfillment expectations (for example, different lead times) via different items. We reviewed 

existing research and literature to grasp the best way to consider omni-channel fulfillment and how to 

optimize service level and other trade-offs at the same time. We further discussed with our sponsor 

company the preferred approach to consider existing models, expected scenarios, and data usage (e.g., 

what inputs are needed, how to acquire them, and how to process them). 

We hypothesized that to allow the model to be feasible at a national level, we would need to 

aggregate some details about the network. For example, we needed to cluster suppliers and/or customers 

into larger regions and make other approximations as appropriate. We have worked with the sponsor 

company to align on what level of aggregation strikes the right balance between detail and feasibility. 

We further hypothesized that the new model will decrease the total network cost by optimizing 

the whole chain, which leads to improving P/L, and furthermore, may reveal opportunities to improve the 

balance sheet by identifying unnecessary assets or finding more efficient use of assets. 

The deliverables of this capstone project include: 

1. New strategic-level optimization model to explore end-to-end flows and inventory positioning 

strategy of the sponsor company supply chain network. 

2.  Compared to a historical baseline, recommendations of major changes to network design.  

3.  An estimate of financial implications of executing the optimal design. 

4.  Scenarios that illustrate different designs based on modifying key variables or constraints 

specifically for three items.  
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2 STATE OF THE ART 

When designing supply chain distribution networks, there are several branches of theory that can 

be applied. Classic supply chain network design analysis optimizes flows between nodes in the network, 

typically to minimize transportation cost; inventory management analysis aims to minimize total 

inventory cost while meeting service level obligations; and newer omnichannel analytical techniques 

layer in multiple fulfillment modes as well as inventory pooling techniques. In reality, these areas of 

supply chain are highly interrelated and should be jointly considered while designing the overall supply 

chain strategy. A final complicating factor is the size of our sponsor company’s distribution network: over 

160,000 unique items distributed through a large national multi-echelon supply chain to over half a 

million customers. To help simplify this network we also examine common approaches using 

segmentation that will assist all areas of analysis mentioned above. 

This chapter reviews the literature on these topics. First, we examine the context of the 

foodservice distribution industry and why supply chain strategy is important to the overall success of the 

companies involved (Section 2.1). Second, we look at common supply chain segmentation methods to 

help us simplify our sponsor company’s data and focus on the most relevant aspects (Section 2.2). Third, 

we look at relevant inventory control policies (Section 2.3). Fourth, we review integrated inventory-

transportation and inventory-location models that jointly optimize transportation and inventory costs in a 

way relevant to our sponsor company (Section 2.4). Fifth, we look at the latest research into omnichannel 

supply chains and how new models modify and/or build upon the integrated inventory-transportation 

models that existed before (Section 2.5). Sixth, we examine ways to reduce model complexity and 

decrease solve time (Section 2.6). Finally, we summarize the key lessons as they apply to this study 

(Section 2.7) 

 



 11 

2.1 Foodservice Supply chain and Omnichannel Strategy 

Foodservice distribution industry sales in the United States were approximately $300 billion in 

2022 and are expected to grow to $422 billion by 2025 (International Foodservice Distributors 

Association, 2022). This industry is composed of large national public distributors, such as Sysco, US 

Foods, and Performance Food Group (PFG); one large national private distributor, Gordon Food Service 

(GFS); and a number of smaller regional distribution companies. The industry is not particularly 

concentrated, with Sysco the largest company at 17% market share (Sysco, 2022), US Foods at 11.4% 

(US Foods, 2022) and PFG at 8.9% (PFG, 2022). Though private, Gordon Food Service is estimated by 

Forbes (2022) to have revenue of approximately $19 billion, equivalent to 6.3% of market share. 

 Figure 1 illustrates the general supply chain for food distribution. In this process, each product is 

sourced from external suppliers, with the exception of a few unique cases such as own-brand products. 

Typically, a single supplier serves a specific product, although it is common for suppliers to have multiple 

supply points. The products then proceed to companies’ distribution sites where they are stored and 

prepared for outbound delivery to customers. These warehouses are strategically located to achieve a 

balance between inventory pooling and lead-time requirements. While certain companies maintain 

physical stores where customers can collect their items, it is worth noting that this practice differs from 

B2C food distribution. In the B2B context, such store facilities are not as prevalent, as the majority of 

B2B distribution sites are typically situated in remote areas, away from urban centers. Ultimately, the 

products are delivered to a large number of customers, which are typically restaurants, schools, jails, 

military facilities, and hospitals. In the B2B food distribution industry, the prevailing norm is one-day 

delivery, a standard that is less common in B2C food distribution. Furthermore, B2B customers typically 

place larger volume orders compared to their B2C counterparts. It is worth noting that each of these 

activities incur distinct costs within the supply chain. Also, the product range offered by B2B food 

distribution companies is highly diverse. These products span from everyday food staples like vegetables, 
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fruits, meat, and dairy products to various food-related supplies such as packaging materials, trays, 

gloves, and napkins.  

 

Figure 1 

General Supply Chain Network and Cost Factors for the Food Distribution Industry 

 

 

At this point all four of the major companies have established digital ordering platforms as part of 

their omnichannel strategy. This paper does not focus on that aspect of omnichannel, but instead on their 

order fulfilment strategies and the proliferation of different modes and channels to serve demand. Each of 

these companies is pursuing a slightly different omnichannel fulfillment strategy. US Foods and GFS 

have both invested in foodservice focused grocery stores (specializing in items for restaurants and other 

food related business, for example) in addition to their distribution networks that deliver direct to 

customers. For GFS this has long been a core part of their strategy and they now have nearly 200 stores in 

13 states (GFS, 2023). US Foods first opened a foodservice store more recently in 2012 and now has 88 

locations across the US (US Foods, 2023). The supply chain strategy of these companies is similar to the 
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omnichannel strategy emerging in the B2C space of large retail grocery companies. US Foods (2022) 

specifically mentions “leveraging omni-channel for additional growth opportunities” in their most recent 

Q4 FY2022 results, in addition to focusing on supply chain network optimization involving “further 

optimized inbound logistics” and “reduced routing mileage and increased cases per mile” (2022). 

Sysco and PFG have both continued a distribution-only (no stores) strategy. Sysco focuses 

primarily on foodservice distribution, though also serves customers in Canada, the Caribbean, Central 

America, and Europe in addition to the core US distribution business. PFG focuses on the US, however, 

has diversified to distribution for convenience stores and movie theaters in addition to the core 

foodservice market. Both Sysco and PFG are pursuing omnichannel but primarily through new ordering 

channels via new digital platforms, fulfillment options, and subscription models. Neither has incorporated 

stores as a fulfillment method. Sysco recently mentioned developing “an omnichannel inventory system 

and distributed order management system to broaden access to what we carry” as part of their Recipe for 

Growth strategy (Sysco, 2022). Meanwhile, PFG has not emphasized omnichannel in its recent public 

presentations, instead focusing on “multiple delivery options” and “cross selling opportunities” that arise 

from its three core customer segments (PFG, 2023). 

 

2.2 Supply Chain Segmentation Techniques 

As previously mentioned, our sponsor company’s supply chain network is complex and not 

possible to accurately model with the high number of unique items, customers, and multiple echelons. We 

need to simplify and rationalize the most important aspects of the network while preserving relevant 

detail. Supply chain segmentation is a useful and widespread tool to assist with this.  

General Electric (GE) was one of the first companies to use the now common ABC segmentation 

approach (Stojanovic & Regodic, 2017). This approach uses one criterion, typically volume or revenue, to 

break items in a supply chain into three categories: A for high volume items, B for medium volume items, 

and C for low volume items. An alternative segmentation approach, XYZ analysis, also uses one criterion 
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but focuses on variability. These two approaches can be combined into an integrated ABC-XYZ approach 

that categories items into a nine-box matrix of volume and variability. A typical weighting is below: 

§ Group A consists of the elements encompassing 0-70% of the obtained total value of the elements. 

§ Group B consists of the elements encompassing 70-90% of the obtained total value of the elements. 

§ Group C consists of the elements encompassing 90-100% of the obtained total value of the elements.  

§ Group X consists of the elements whose variation coefficient is less than 0.5. 

§ Group Y consists of the elements whose variation coefficient is between 0.5 and 1. 

§ Group Z consists of the elements whose variation coefficient is bigger than 1. 

Other approaches also exist. Lee (2002) suggests using a 2x2 matrix of supply and demand 

variability. Christopher et al. (2006) suggest using demand predictability and replenishment lead time. 

McKinsey (Alicke & Forsting, 2017) uses a three-step approach that narrows down to 2-3 key 

performance drivers, analyzes the portfolio using the drivers, and then applies a tailored supply chain 

strategy to each segment. Given all the different techniques, Pereira et al. (2022) summarize a literature 

review with the most common attributes used for segmentation, the result of which is shown in Figure 2: 

 

Figure 2 

Common Attributes for Segmentation 
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 Taking into account our understanding of the company’s supply chain and most critical 

parameters, we aim to use a manageable but meaningful number of attributes to simplify the supply chain 

network. We then consistently use this segmentation throughout the network design and inventory policy 

analysis. Lastly, we use the segmentation framework to help select different items that demonstrate the 

robustness of our approach. 

 

2.3 Inventory Policy 

 There are many different approaches to inventory policy. A common approach is to set inventory 

according to days of supply. Yet another looks at historical demand and sets inventory at the most 

conservative point where inventory is set at the average needed for order fulfillment plus a buffer of 

(maximum daily sales * maximum lead time) – (average daily sales * average lead time). Our sponsor 

company generally sets inventory levels using a periodic review method with a target fill rate. In this 

approach both a cycle stock level, related to normal order patterns, and a safety stock level, to cover 

uncertainty, for inventory can be estimated. A complicating factor is that for many products both demand 

from customers and lead time from suppliers are highly variable. Silver et al. (1998) noted the standard 

approach in this case with the following equation for safety stock: 

𝑧"𝐿𝑇𝜎!" + 𝐷"𝜎#$"  

where z is the service level desired, LT is the combined average lead time and review period, 𝜎! is the 

standard deviation of demand, 𝜎#$ is the standard deviation of lead time, and D is the average demand. 

This equation assumes that demand and lead time are normally distributed. Cycle stock in a periodic 

review system is then based on order frequency and can be calculated as: 

Annual demand * Review period (weeks) / 52 / 2 

Adding these two equations together then represents the average level of inventory expected over 

the period of time examined. While periodic review inventory models can result in higher levels of 

inventory compared to continuous review models, in which orders are triggered based on order points 
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rather than time, the advantage of periodic review is due to a simpler execution. This is more important in 

large companies with significant SKU counts, like our sponsor company, as setting standard review 

cadences is more likely to prevent errors and can also help minimize freight costs if multiple SKUs are 

ordered at once. 

Prak et al. (2017) note that the traditional approach, as discussed above, needs to be modified 

when looking to the future. Unless demand is relatively stable, most companies rely on forecasts rather 

than historical demand to plan for future demand. To adjust for forecast inclusion, historical average 

demand would be replaced by the forecast amount and standard deviation of demand would be replaced 

by forecast error, measured for example by the root mean square error (RMSE). However, Prak et al. 

(2017) also note that using common forecasting techniques such as simple moving average or exponential 

smoothing would result in forecast errors for different periods that are positively correlated. This would 

then likely result in setting safety stock targets that are too low. 

 This project relies only on historical demand to demonstrate proof of concept and so avoids this 

issue. However, any actual implementation should keep the previous warning in mind with adapting this 

methodology for forecast inclusion.  

 

2.4 Network Design with Integrated Inventory Policy 

While linear programming-based network optimization techniques, designed to optimize 

transportation flows, have existed since the 1940s, research on integrating inventory into these techniques 

is relatively new. The main stumbling block was that while many transportation-related costs scaled in a 

linear fashion, inventory costs such as safety stock cost scaled in a nonlinear way. Interest in this topic 

increased in the 1990s as companies increasingly globalized, extending supply chains and making the 

tradeoffs between transportation costs and inventory costs more important. At the same time, computing 

power was increasing, and researchers started applying different mathematical techniques to either 
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approximate inventory costs into network optimization models or reformulate equations so they would be 

compatible with commercial solvers. 

An early example of approximation of inventory costs was Nozick and Turnquist (1998), which 

integrated safety stock to network design by assuming a linear relationship between the number of DCs 

and the amount of safety stock. However, this assumption may not hold in cases where the relationship 

between variables is nonlinear, or when there is a pooling effect in the inventory across different products 

or locations, rendering the approach unrealistic for companies relying on their past records. Croxton and 

Zinn (2005) applied the “Square Root Law,” which found natural behavior of safety stock nonlinearly 

increased with the number of DCs (Disney et al., 2006).  

𝑆𝑎𝑓𝑒𝑡𝑦	𝑆𝑡𝑜𝑐𝑘 = 𝑆𝑆%√#	𝐷𝐶𝑠 

In this study, the initial value of safety stock 𝑆𝑆% was determined using the standard safety stock 

equation, assuming a single distribution center (DC) and all demands were directed to this DC. While this 

method does incorporate the number of DCs, it does not capture the dynamic nature of safety stock, 

which is influenced by several other factors such as lead-time, lead-time variability, demand size, and 

demand variability as indicated by the standard equation. It is worth noting that even when two network 

designs have the same number of DCs, safety stock may vary considerably, especially when a certain DC 

has significantly higher or more variable demand compared to the other DCs. 

Other early attempts addressed the issue by solving transportation models and inventory models 

sequentially and/or iteratively. This can be seen in Darmawan et al. (2021), which first solved the network 

design to fix the parameters needed to solve the safety stock problem and then solved safety stock 

optimization using these parameters. This can also be seen in some commercial software such as Coupa 

Supply Chain Design & Planning which offers both modules as separate entities. This methodology 

solves the larger location and transportation problem first then uses elements of that solution, such as 

allocation of demand and lead-time from suppliers, to feed a separate inventory module (Coupa, 2021).  

However, this two-step approach does not address the interdependence between safety stock and 

network design, especially if holding costs are high. Changes in the safety stock amount for each DC, 
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often incurred to take advantage of the pooling effect, lead to changes in optimal network design, and vice 

versa. Ignoring this impact may result in solutions that are far from optimal. Multi-echelon networks 

further complicate the issue. 

Later research focused on transforming the nonlinear equations related to inventory cost to a form 

compatible with commercial solvers. For instance, a mixed-integer nonlinear programming (MINLP) 

model was developed by Ağralı et al. (2012) to incorporate safety stock considerations, which was solved 

using a customized algorithm based on generalized Benders decomposition and outer approximation. You 

and Grossmann (2008) used a different approach that transformed the objective function by moving the 

nonlinear parameters into constraints with quadratic equations. The transformed objective function was 

then linear. Puga et al. (2019) took a similar approach using transformation with conic quadratic 

equations, stating that “the main advantages of the CQMIP approach is that it is direct, efficient, and 

flexible, as it can be solved using standard optimization packages without the need for specialized 

algorithms.” 

With the release of version 9.0 in Nov 2019, the widely used commercial solver Gurobi gained the 

ability to solve optimization problems with linear objective functions and quadratic constraints. We take 

advantage of this new capability, combined with the more recent research approaches mentioned above, 

to create a model that can solve the integrated transportation-inventory problem in one step. 

 

2.5 Omnichannel Distribution Models and Lateral Transshipment 

Much of the literature of omnichannel distribution focuses on B2C and combining elements of store 

fulfillment vs online fulfillment. Taylor et al. (2019) extensively reviewed numerous past literatures 

pertaining to omnichannel fulfillment and arrived at the significant finding that "the integration of 

fulfillment channel inventory and resources is increasingly recognized as a crucial objective in fulfillment 

management." Furthermore, their research paper presented a summary of statistical data concerning 

published papers, highlighting the prevalence of analytical papers, which accounted for over 40% of all 
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the papers in 2019. This observation suggests that both companies and the industry exhibit a greater 

emphasis on analytical research, prioritizing quantitative analyses over qualitative approaches. 

The field of B2C omnichannel supply chain has witnessed a significant number of papers. Agatz et al. 

(2019) conducted research specifically on route optimization within the context of omnichannel 

strategies. Their study emphasized the effectiveness of considering shared capacity at facilities to 

accommodate multiple supply channels within the omnichannel network. Chopra (2018) examined how 

transportation costs, inventory costs, and other supply chain factors vary depending on the types of 

omnichannel strategies employed, such as showrooms, home delivery, and customer self-pickup. These 

papers provided valuable insights into B2C omnichannel supply chain dynamics. However, since our 

research focuses on the B2B domain, which involves different fulfillment methods that do not include 

stores, it is necessary to explore past literature that specifically addresses B2B supply chain scenarios, 

which are relatively less common. 

Gerea et al. (2021) note in an omnichannel literature review, for example, that only 4% of papers 

reviewed address B2B specific applications. This section focuses on research specific and/or applicable to 

B2B and excluding stores. This focus includes opening multiple distribution fulfillment methods such as 

direct ship from supplier and drop ship. We also focus on review on lateral transshipments and the 

concept of virtual pooling of inventory. 

 Guerrero-Lorente et al. (2020) note that there is growing evidence that network designs with 

flexible fulfillment, defined as multiple possible fulfillment options by different echelons in the network, 

outperform more traditional network designs. This is due primarily to better facility utilization and the 

minimization of relevant fulfillment costs. They also note that there is the potential for better inventory 

management via the risk pooling effect across channels. However, the complexity of these new network 

designs can make finding optimal solutions more difficult.  

Hubner et al. (2016) came to similar conclusions pointing out the inherent tradeoff between 

inventory pooling and delivery efficiency. They also note that those that adopt omnichannel fulfillment 

strategies can delay inventory allocation longer, taking advantage of more centralized inventory. They 
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observe that a common strategy emerging is to stock fast moving items at regional DCs or stores close to 

customers with short lead times while stocking slow moving items at central DCs to take advantage of the 

pooling effect. They also note that in this strategy the regional DCs can also act as transshipment points 

(cross-dock) for the central DCs. Finally, they mention direct supplier shipments as a viable but limited 

option for fulfillment, which can have advantages in inventory and processing costs. However, there are 

potential downsides including longer lead times, data exchange issues, and fragmentation of orders. 

While Winkenbach et al. (2021) mainly focus on omnichannel in a B2C context, there are several 

conclusions relevant to this project. First, that the network design and fulfillment options should be 

tailored to customer requirements, lead times, and demand characteristics such as density. This will result 

in more optimal solutions. Second, that solving the different supply chain design parameters in an 

integrated methodology, where possible, yields significantly better results than iterative and/or sequential 

solving methodologies.   

As the number of nodes and possible fulfillment combinations increases, omnichannel supply 

chains begin to take on characteristics relevant from other branches of supply chain theory. There are two 

that we focus on in this paper: multi-echelon inventory management and lateral transshipments. Multi-

echelon systems, as described by Graves and Williams (2000), can strategically locate inventory at 

different and potentially sequential points in the supply chain depending on net lead time and other 

network characteristics. The optimal solution in these networks may store inventory in multiple echelons 

in the supply chain. Lateral transshipment focuses specifically on nodes with duplicative inventory in the 

same echelon acting as potential sources of supply for each other. As discussed in Meissner and 

Senicheva (2018), this can be characterized as either reactive, due to stockouts, or proactive, which tend 

to focus on transshipments for inventory equalization. In general transshipment is worth the cost when the 

cost of stockout is higher than the cost of transshipment or when holding costs are high, and therefore 

tends to be reserved for either high margin or highly critical items such as spare parts. However, Paterson 

et al. (2011) note there is a growing body of research demonstrating the pooling effects from 

transshipments can lower overall system costs as well as increase service levels. Omnichannel is noted 
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specifically as potentially a new area where lateral transshipment across channels could be used to 

improve performance. 

 

2.6 Efficient Modelling 

After discussing the essential components of omnichannel supply chain design models, another 

critical aspect to consider is model solve time due to the potential complexity of these models. In this 

chapter, we briefly explain the importance of model efficiency and discuss ways to improve it. 

 

2.6.1 Computational Time for Supply Chain Problems 

In supply chain management, the complexity of business rules and the numerous transactional 

datapoints necessitate the use of large models. This results in the need for high computational power and 

extended solving times. The slow-down in model solving can be attributed to various mathematical 

factors, such as binary variables, flow constraints, and non-zero constraints, according to Coupa 

(Strickler, 2021). Additionally, some classes of problems in supply chain management are known to be 

intrinsically difficult to solve. One good example is mixed integer linear programming (MILP), which is 

categorized as “NP-Hard”, “the complexity class of decision problems that are intrinsically harder than 

those that can be solved by a nondeterministic Turing machine in polynomial time (Atallah, 1999).” This 

observation naturally implies that comparatively intricate approaches, such as MINLP, are more 

challenging, or at least equally demanding. Due to the growing volatility in the supply chain industry, it 

has become increasingly common to make quick decisions by repeatedly running models with the large 

amount of data, which creates a conflict with the nature of this type of problem, highlighting the need for 

improved efficiency. 
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2.6.2 Efficient Methods for Large-scale NP-Hard Problems 

The optimization of NP-Hard large-scale problems has been a focus of researchers who have 

dedicated considerable effort towards the development of faster algorithms to solve such "difficult" 

problems. One approach utilized involves breaking down the problem into smaller subproblems, based on 

binary variable values or other dominant factors of the problem, using a method such as Branch-and-

Bound. The efforts to narrow down the scope of the problem lead to the development of more 

sophisticated methods such as Cutting Plane, Branch-and-Cut, and Column Generation. Dividing the 

problem based on the block problem structure has also been the focus of researchers who use various 

decomposition methods, including generalized Benders decomposition and Outer Approximation. The 

latter, Outer Approximation (OA), proposed by Duran and Grossmann (1986), is an intuitive approach 

that has shown promise in complex optimization problems such as MINLP. Compared to other 

decomposition algorithms, OA is relatively easy to implement, especially when the non-linear term is 

easily differentiable. This method decomposes a MINLP problem into an NLP problem and a MILP 

problem. The NLP problem solves the entire problem with fixed binary variables, while the MILP 

problem approximates the non-linear term as a linear function and obtains optimal values for the binary 

variables used in the NLP (Aloufi, 2021). OA then iteratively solves these problems to obtain the optimal 

solution or the solution whose upper bound and lower bound are close enough. The utilization of these 

sophisticated methods has significantly contributed to reducing the time taken to solve complicated large-

scale optimization problems, including supply chain problems. 

 

2.7 State of the Art Summary and Conclusions 

Omnichannel supply chain strategies are increasingly important to the foodservice distribution 

industry. While some industry players are pursuing this through the integration of stores into existing 

distribution supply chains, others are experimenting with new fulfillment methods to meet customer 

demand while minimizing overall supply chain cost. New model techniques and commercial solver 
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capabilities can explore how transportation and inventory costs change under varying scenarios in a 

single, integrated methodology. This capstone project demonstrates how these learnings apply to our 

sponsor company’s distribution network by building an integrated transportation-inventory model with 

omnichannel inspired multiple fulfilment modes and lateral transshipments.  
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3 DATA AND METHODOLOGY 

In this chapter, we outline the methodology and data utilized to develop the inventory-integrated 

omnichannel network design model for our sponsor, with a focus on minimizing the overall supply chain 

cost. We will focus on the scope of the project, the data processing required, model formulation, and 

techniques used to improve model solve time. 

 

3.1 Scope and Process 

To ensure the scope of our research was well-defined, we focused solely on the supply chain 

activities that the sponsor company can manage and control. These activities include procurement from 

suppliers, inbound transportation from suppliers to distribution sites, warehouse handling and holding, 

outbound transportation from distribution sites to customers, and other transportation activities, such as 

interfacility transportation. We excluded external activities that are not manageable by the sponsor, such 

as procurement activities from further tiers of suppliers (e.g., 2nd and 3rd tier suppliers), sales from 

customers to end-users, and indirect managerial activities like depreciation or taxation. As a result, our 

model incorporated product cost, inbound and outbound transportation cost, omnichannel cost (e.g., direct 

ship cost and cross-docking cost), warehouse handling cost, and inventory holding cost. We did not 

consider any other costs as we assumed they would not have a significant impact on the entire supply 

chain network of the company. We provide detailed definitions and formulations for each cost in Section 

3.4. 

To build the model, we followed the approach shown in Figure 3. Prior to model development, 

we processed the data to convert it into formats that fit our formulas (e.g., changing cost units from 

distance to cases) and established the current state of the network (baseline). Once we had a clear 

understanding of the network and our hypotheses were established, we developed the model using the 

formulas outlined in Section 3.4 and obtained the optimized network. We also tested multiple fulfillment 

options by adding new elements to the current network, such as new direct transportation lanes between 
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suppliers and customers. 

 

Figure 3 

Research Process 

 

 

3.2 Formulation Overview 

In order to find an optimal structure of supply chain network and inventory allocations with 

minimized cost, we formulated our problem as an optimization problem. We opted for optimization over 

simulation as we required "prescriptive" analysis that would provide us with ideas on how to restructure 

our network, rather than validating existing scenarios. To consider the non-linear safety stock cost, we 

developed a mixed-integer non-linear programming problem (MINLP) as our optimization model. The 

subsequent sections provide details on key assumptions, formulations for our model, and algorithms to 

solve it. 
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3.3 Key Assumptions and Data Pre-processing 

Due to the difficulties of mathematical models accurately replicating reality, we made some 

assumptions in terms of timeframe and period, demand, regions, and items. Specifically, our model is a 

single-period model that optimizes total flows for a one-year period (52 weeks). Our research focused 

solely on the supply chain within the continental United States, excluding Alaska, Hawaii, and Puerto 

Rico, which were considered geographically remote from the mainland and expected to have no influence 

on the result. In addition, our model is a single-item model (only one item is considered at once for one-

time run of the model), meaning only one SKU is considered at a time. However, it is expandable to a 

multi-item model by adding more decision variables and constraints.  

 In Sections 3.3.1 - Section 3.3.10 ahead we list the key assumptions included for our major model 

parameters, including: item selection, product cost, inbound cost, warehouse cost, inventory cost, 

outbound cost, direct ship cost, central warehouse cost, and cross docking cost. For all parameters 

mentioned we used the most recent data available from our Sponsor ranging from April 1, 2022 – March 

31, 2023. 

 

3.3.1 Approach to Data Collection 

We relied on two primary sources for all data required: expert interviews and direct data collection 

from our sponsor company’s databases. Over the past 6 months we interviewed subject matter experts 

(SMEs) at our sponsor company in the following functional areas: merchandising, inbound logistics, 

inventory management, network design, routing, supply chain finance, industrial engineering, and supply 

chain strategy. Data collection was handled via SQL queries that pulled annual data for relevant purchase 

orders, sales obligations, inventory levels, supplier characteristics, site characteristics, and customer 

locations. Additionally, we received financial summaries for all sites that had breakdowns by department 

and cost codes, for example: fuel, hourly wages, benefits, maintenance, and other relevant categories. 
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3.3.2 Item Selection 

 To determine which items to focus this project on, we analyzed and segmented our Sponsor 

company’s entire SKU count for the annual period mentioned above using the ABC-XYZ approach. The 

product portfolio follows the common pattern of an “L” shape with a small number of products 

responsible for a significant portion of demand with low variability, while there is also a long tail of low 

volume products with high variability. We also added detail on item storage type, which could be either 

Dry, Cold (refrigerated), or Frozen. In addition, we added data on customer order lead time from 

historical sales information as well as inventory levels as of April 1, 2023. The combination of this data 

can be seen visually in Figure 4 below, with three items of interest highlighted. 

 

Figure 4 

ABC-XYZ Segmentation 

 

 

 These three items represent a cross-section of several of these important parameters that can help 

highlight how the model performs using different inputs. SKU1 is a dry item with moderate to high 
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volume, relatively high variability of demand, a high percentage of customer orders with 2 days or more 

of lead time, and a moderate level of inventory. SKU2 is a cooler item with moderate volume, low 

variability, and also a high percentage of 2+ day customer lead time. This item has a higher overall 

inventory level. Finally, SKU3 is a frozen item with very high volume and very low variability, with 

close to 80% of orders from customers needing next day delivery. This item has a high inventory level. 

Table 1 below summarizes these factors.  

 

Table 1 

SKU Selection 

Item Name Storage 
Type 

Annual 
Demand 

(Mil. 
Cases) 

CV 
2 + Days 

Order 
(%) 

Model Lead 
Time 

Inv Dollars 
(4/1/2023, 

$Mil) 
Segment 

SKU 1 Dry 0.7 0.51 75 2 day 1.5 AY 
SKU 2 Cooler 0.4 0.21 61 2 day 2.5 AX 
SKU 3 Frozen 4.5 0.07 22 1 day 2.2 AX 

 

 

3.3.3 Product Cost, Distribution Site Location, and Warehouse Handling Cost 

 Product cost for all items was pulled from the Sponsor company’s PO data during the time period 

of interest. An annual average $/case cost by supply point was used. Latitude and longitude of specific 

supply points were collected. 

Warehouse handling cost was given by the Sponsor company’s finance organization for each 

distribution site. This was also an annual $/case average for all cases flowing through the site. Latitude 

and longitude of specific distribution sites were collected. 
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3.3.4 Product Demand 

 Annual demand by item was aggregated into 3-digit zip code prefix demand nodes 

(approximately 900). We also calculated standard deviation of demand for each item by demand node. 

Lastly, we calculated latitude / longitude centroids for each of the nodes. 

 

3.3.5 Inbound/Outbound Transportation Cost and Lane Availability 

 Given that the sponsor company operates a large distribution network with potentially millions of 

lanes and product combinations for both inbound and outbound, we used some simplifying assumptions 

to focus on the three items of interest. The most important of these is that as a general rule we limit the 

model to only existing lanes for both inbound and outbound across all products of the same storage type 

(including beyond our items of interest). For example, this means we would allow inbound lanes from the 

supply points of interest to distribution sites for all products the sponsor company currently receives from 

that supplier. On the outbound side, we allow only existing lanes of any product from distribution sites to 

demand nodes.  

 We made this simplifying assumption for three reasons in conjunction with feedback from the 

sponsor company. The first is that we want to avoid the issue of stranded items for either inbound or 

outbound. The sponsor company typically receives full truck load shipments from suppliers of multiple 

items to the distribution sites. Similarly, outbound flows are multi-item and multi-stop. Our cost model 

assumes a variable $/case cost for flows. Limiting the solution space to existing lanes would not require 

adding any fixed cost component of opening the new lane and would avoid, for example, the potential 

issue of the model suggesting the creation of a new outbound lane just to deliver one item, which is 

usually unrealistic. The second benefit of this approach is that it substantially constrains the possible 

solution space and allows for much faster solve times. The final reason is that limiting to existing lanes 

meant we could use existing cost data that would lead to more realistic conclusions without having to 

spend too much time estimating freight costs (not a core focus of this project). 
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 Once we had the possible inbound lanes defined, we used annual historical cost information 

specific to that lane and item if it existed. If the lane existed but was for a different product, we used a 

simple regression model with distance as the independent variable to predict inbound rate data specific to 

the product of interest. Figure 5 below shows an example of this for SKU3. R-squared values for these 

regressions ranged from 0.55 to 0.73 depending on the item, which we deemed reasonable enough for the 

strategic level of this model. We used a similar regression approach to estimate lead times that was also 

based on distance. 

 

Figure 5 

Regression for Inbound Freight Rates 

 

 

 Similarly for outbound lanes, once we had possible lanes defined, we used historical data to 

estimate $/case coefficients. In this case, we used a high-level approximation based on cost-to-serve data 

supplied by the sponsor company’s finance team. This was broken down into fixed and variable 

components linked to each distribution site. The industrial engineering team of the sponsor company 

advised us that approximately 50% of a deliver partner’s time is spent driving (to scale with distance), 
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while the remainder is spent unloading and on other activities unrelated to distance.  Linking that with the 

weighted average distance of volume for each site, we created a simple straight-line estimate of how 

outbound costs would scale depending on how far a demand node is located from a distribution site. See 

Figure 6 for an example of this approximation. Future improvements to this methodology could take more 

granular customer-level rather than site-level cost-to-serve data, which would then give more confidence 

in estimates further from the weighted average.  

 

Figure 6 

Approximation for Outbound Transportation Cost 

 

 

Lastly, we used the well-known Haversine formula to estimate mile distance between two points using 

latitude and longitude and applied a universal 1.15 circuity factor to account for more realistic travel 

distances.  
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3.3.6 Inventory Cost Parameters 

 Our sponsor company uses a periodic review method for inventory replenishment. We collected 

historical review periods as weeks/order for each distribution site for each item. We also collected 

average lead time and standard deviation of lead time for each inbound lane using historical data. We 

calculated average annual inventory level for each item at each site using daily inventory numbers during 

the year of interest. Parameters for demand and demand variability would be calculated internally in the 

model based on flows chosen. 

The sponsor company typically targets a fill rate of ~98% for items. To model target inventory 

levels, we created three views for comparison: actual average annual inventory, inventory based on actual 

historical flows using our inventory equation and an assumed fill rate of 98% (Type 2 service level), and a 

model estimated inventory level using a universal z-score of 1.282 (approx. 90% Type 1 service level). 

We adopted a universal z-score as it is significantly simpler to include in the model and roughly 

approximates the target fill rate given the sponsor company’s typical order size and demand variability.  

Lastly, we assume a 10% inventory holding cost percentage for all items. 

 

3.3.7 Direct Ship Cost 

 To model a direct ship option from supplier to customer we made an exception to our assumption 

of no additional lanes. We created new lanes from these supply nodes to each demand node and estimated 

the approximate $/case cost of opening these new lanes using the cost profile of the nearest distribution 

center. This assumption was used to replicate local cost and logistical considerations. We then scaled 

these costs based on volume at the demand node and the assumption that customers would want at least 

once-weekly delivery of the item. This effectively made the cost “out of the money” for the vast majority 

of new direct ship lanes due to insufficient volume, however for a small group of high-volume demand 

nodes located close to supply nodes the costs were potentially in line with normal delivery methods. 
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3.3.8 Cross-docking / Peer Replenishment Cost 

 We modeled two variations of cross-site fulfillment: one, involving cross-docking between sites 

where the first site holds inventory and the second site only passes through items for delivery, and a 

second with peer-to-peer replenishment, in which the first site acts as a supplier to the second site and 

both sites hold inventory. Cross-docking was assumed to be universally lower in cost and thus preferred 

in every instance available. The model would be allowed to use each variant depending on the lead time 

requirement of the item and the distance between sites. Items with a 2-day lead time requirement would 

be given the option to cross dock for distances less than 2000 miles, whereas items with a 1-day 

requirement would only have time to cross-dock if the distance was less than 500 miles. Transfers 

between sites above the distance would still be allowed, however they would be required to use the more 

costly option of peer-to-peer replenishment. 

In the first instance with cross-docking, we would need to model additional costs related to a site-

to-site shuttle as well as a cross-docking handling cost at the second site. For each item, we opened up 

lanes from each site to every other site in the network set at 90% of the inbound cost estimated using our 

inbound regressions. This assumption is based on the premise that these shuttles would largely mirror 

similar inbound full truck load rates, that the shuttles would be part of a national cross-docking network 

that the sponsor company was considering establishing, and that a reasonable cost estimate for these flows 

would mirror the national inbound market rates with some discount based on not needing to support third-

party profit margins. Looking at publicly available financial statements for large national freight 

companies, profit margins tended to be between 5-10%.  

For the cross-docking warehouse handling cost, we used a simplifying assumption that this was 

equal to 50% of the historical warehouse handling costs already discussed in Section 3.3.2. The resulting 

$/case assumption was then verified with the sponsor company as reasonably similar to a cross docking 

pilot currently underway.  

In the second instance of peer-to-peer replenishment, similar assumptions apply however the 

second site would be stocking inventory. As mentioned above, this would only be used if the customer 
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lead time requirement was too short for the cross-site shuttle to arrive. In this case we applied the full 

warehouse handling cost of the second site, due to the need to do normal unload / storage / picking / 

loading, and we added a cycle stock adder to the flow. This adder was equivalent to: 

Total cycle stock cost = Annual demand * Review period (weeks) / 52 / 2 * Holding cost 

Simplified to cycle stock cost adder per case = Review Period / 52 / 2 * Holding cost 

As a simplifying assumption, we model zero safety stock for this option. This is due to the short 

and predictable lead time for these shuttles (1-2 days) that effectively drive the safety stock requirement 

close to zero. In reality, implementation of this form of replenishment would likely have some nominal 

amount of safety stock, however, we did not find this simplifying assumption to substantially change 

model results.  

 

3.3.9 Central Warehouse Cost 

 The sponsor company also has multiple central warehouses located across the US, which were 

typically used to drop ship items via third party carriers direct to customers. In some instances, the central 

warehouses also were used as inventory hubs for cross-docking into normal outbound lanes. We included 

central warehouses for both drop ship and as potential cross-docks sites in the model. Costs for drop ship 

were included from the sponsor company’s finance organization. Cross-dock costs were modeled as 

discussed above in Section 3.3.8. We included new lanes to/from central warehouses if they did not exist 

using the estimation methods discussed previously. 

 

3.3.10 Summary of Cost Elements for Each Item 

As noted in section 3.3.2, the three items chosen have notably different demand profiles, customer 

lead times, and storage types. Additionally, they were chosen due to having different cost profiles as 

shown in Table 2 below. This figure summarizes all relevant cost elements for the annual period 

reviewed. 
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Table 2 

Cost Elements for Each Item 

Cost Summary (Thousand USD) SKU 1 SKU 2 SKU 3 
$K % $K % $K % 

Transportation Cost 2,832 7 3,593 6 15,467 20 
 Inbound Transportation Cost 1,410 4 2,761 5 5,871 8 
 Cross-dock Cost - 0 - 0 1 0 
 Direct Ship Cost - 0 - 0 - 0 
 Outbound Transportation Cost 1,422 4 832 1 9,595 13 
Warehousing Cost 500 1 389 1 3,691 5 
Inventory Cost 218 1 195 0 234 0 
 Cycle Stock Cost 71 0 70 0 61 0 
 Safety Stock Cost 147 0 125 0 173 0 
Subtotal Logistics Cost 3,550 9 4,177 7 19,392 25 
Product Cost 36,305 91 53,017 93 56,771 75 
Total Supply Chain Cost 39,855 100 57,194 100 76,163 100 

 

For SKU1, transportation cost is evenly split between inbound and outbound costs. Warehouse cost 

and inventory cost are minimal, and total logistics cost is approximately 9% of total supply chain cost. 

The evenly split transportation cost is due to having 5 supplier ship points across the US which limit total 

inbound miles. SKU2 is different in that inbound cost makes up 77% of transportation cost, due to having 

2 supplier ship points both on the East Coast that need to deliver across the full network. Similar to 

SKU1, warehouse cost and inventory cost are minimal components of total supply chain cost. SKU3 is 

different once again in that outbound transportation cost makes up 62% of total transportation cost. 

Inventory cost again is minimal compared to other costs, however in this case warehouse cost is higher at 

5% of total supply chain cost for the item. Product cost is also noticeably lower for this item compared to 

the others, at only 75% of total supply chain cost. These differences in cost profiles help demonstrate how 

the model optimizes differently as relative costs change. 
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3.4 Formulation 

Based on the assumptions we made, we developed our MINLP model, with formulas that differ 

significantly by supply chain activity. In this section, we provide a summary of the formulas used for the 

model, with separate explanations provided for transportation, inventory, and procurement. One 

noteworthy element of our model is the introduction of decision variables 𝑥&'(, which represents the 

fraction of demand at customer j fulfilled through distribution site k from supplier i. For example, if a 

customer 1 has a demand of 100 cases, and 60 cases are fulfilled through distribution site 1 from supplier 

1, 𝑥))) = 0.6	 ;= *%
)%%
<. Thus, these are continuous decision variables ranging from 0 to 1, with the 

number of decision variables being equal to the number of possible transportation lanes among suppliers, 

distribution sites, and customers. The annotations, parameters, and decision variables used for our model 

are shown below. 

Annotations: 

𝑖 ∈ 𝑆  : set of suppliers	
𝑘 ∈ 𝑊		 : set of sites 
𝑗 ∈ 𝐶		 : set of customers 

 

Parameters:  

𝑡!"#   : unit inbound transportation cost from supplier i to site k	
𝑡"$% 		 : unit outbound transportation cost from site k to customer j 
𝑡!$& 		 : unit direst ship cost from supplier i to customer j 
𝑤" 	 : unit warehouse handling cost at site k 
𝑝! 	 : unit product cost from supplier i 
𝑟" 	 : weeks per order at site k 
𝑙!" 	 : average lead time plus review period for lane ik 
𝑢$ 	 : standard deviation of demand at customer j 
𝑣!" 	 : standard deviation of lead time for lane ik 
𝐷$  : demand at customer j 
ℎ	 : inventory holding cost percentage 
𝑃	 : average product cost 
𝑌	 : weeks in a year (52 in our case) 
𝑧	 : z score (in our case, 90% of cycle service level (z ≅ 1.282)) 
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Decision Variables:  

𝑥!"$  : fraction of demand at customer j fulfilled through distribution site k from supplier i	
𝑦!" 		 : whether supplier i serves distribution site k (binary) 
𝑥!$& 		 : fraction of demand at customer j fulfilled directly from supplier i 

 

3.4.1 Transportation Cost 

In our optimization model, transportation cost was identified as the most significant component 

among all supply chain activities, as any changes in the supply chain structure directly impact it. For the 

sponsor company, transportation cost includes all the expenses associated with moving goods from one 

point to another, such as labor, fuel, and insurance. In our model, we considered three types of 

transportation costs: outbound transportation cost, inbound transportation cost, and other transportation 

costs (e.g., interfacility transportation cost and direct ship cost). 

We defined inbound transportation cost as the product of the flow of cases from suppliers to distribution 

sites and the unit inbound transportation cost per case, which varies by lane (i.e., the combination of 

suppliers and distribution sites). This is expressed in the following formula: 

===𝑡&'+ 𝐷(𝑥&'(
(∈-'∈.&∈/

(1) 

In the same way, we defined outbound transportation cost as the product of the flow of cases from 

distribution sites to customers and unit outbound transportation cost per case, which is: 

===𝑡'(0

(∈-'∈.&∈/

𝐷(𝑥&'( (2) 

In our current model, we have considered only inbound and outbound transportation costs. 

However, in a later chapter, we have also included transportation costs for other lanes, such as direct 

shipping from suppliers to customers. To incorporate these additional costs, we have created new decision 

variables and constants based on the same principles as inbound and outbound transportation costs. We 

provide more details about these additional options in Section 3.6. 
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3.4.2 Warehouse Handling / Inventory Cost 

When modifying the supply chain network, it is necessary to also adjust inventory positioning, as 

discussed in the state-of-the-art chapter. However, this can result in differences in the volume of items 

processed at each distribution site, leading to additional costs such as warehouse handling cost and 

inventory holding cost for the company. Warehouse handling cost refers to the cost of unloading, 

allocating, picking, packing, and loading items, which is primarily incurred by labor. To calculate this 

cost, we multiplied the number of cases processed by the unit warehouse handling cost, which varies by 

distribution site. The formula for warehouse handling cost is provided below: 

===𝑤'𝐷(𝑥&'(
(∈-'∈.&∈/

(3) 

Inventory holding cost is a significant factor to consider in strategic network design models, but it 

can be difficult to accurately account for all the associated cost factors. To address this, we introduced the 

concept of inventory holding cost percentage. This percentage represents the ratio of total yearly 

inventory holding cost to total yearly product cost, and for the sponsor's case, it was approximately 10%, 

as determined by recent years' data and input from the inventory manager. By using this simplified 

approach, we were able to incorporate inventory holding cost into our optimization model without the 

need for detailed cost breakdowns. With this concept, total inventory cost can be expressed as 

𝑇𝑜𝑡𝑎𝑙	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦	𝐻𝑜𝑙𝑑𝑖𝑛𝑔	𝐶𝑜𝑠𝑡 = 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦	𝐻𝑜𝑙𝑑𝑖𝑛𝑔	𝐶𝑜𝑠𝑡	𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	(%) ×

	𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑟𝑜𝑑𝑢𝑐𝑡	𝐶𝑜𝑠𝑡	 ; $
2345

< × 𝑇𝑜𝑡𝑎𝑙	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦	𝐴𝑚𝑜𝑢𝑛𝑡(𝑐𝑎𝑠𝑒). In general, total inventory amount 

is summing of cycle stock, safety stock, and pipeline (WIP) stock. 

Cycle stock is regarded as average amount of inventory to fulfill customers’ demand, which is 

𝐶𝑆 = 𝑇𝑜𝑡𝑎𝑙	𝑓𝑙𝑜𝑤	𝑎𝑚𝑜𝑢𝑛𝑡	 × 	𝑊𝑒𝑒𝑘𝑠	𝑝𝑒𝑟	𝑜𝑟𝑑𝑒𝑟	/	52	/	2. Total cycle inventory holding cost was 

therefore formulated as: 

ℎ𝑃
2𝑌===𝑟'𝐷(𝑥&'(

(∈-'∈.&∈/

(4) 
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Safety stock is another type of inventory, and the standard safety stock equation with demand and 

supply variability considerations is: 

"𝐿𝑇𝜎!" + 𝐷"𝜎#$" (5)	

Given that our decision variable 𝑥&'( represents the fraction of demand for each customer, the combined 

variance of demand for distribution site k when using supplier i (𝜎!!") can be written as below, assuming 

independent normal distributions for each customer demand: 

𝜎!!"
" ==𝑢("𝑥&'("

(

(6) 

Note that a new demand for multiple combinations of i and k is a weighted sum of demands for all the 

served customers, and 𝑥&'( should be squared to calculate the combined variance. Also, a square of 

weekly demand through supplier i and distribution site k (𝐷&')  is: 

𝐷&'" ==Z
𝐷(𝑥&'(
𝑌 [

"

(

==
𝐷("

𝑌"
𝑥&'("

(

(7) 

With these equations in mind, safety stock for every combination of supplier i and distribution site k is: 

𝑧]𝑙&'=𝑢("𝑥&'("
(

+ 𝑣&'" =
𝐷("

𝑌" 𝑥&'(
"

(

(8) 

Assuming each distribution site must choose only one supplier, which is a very common situation for the 

sponsor company, the total amount of safety stock becomes the equation (9) as shown below. Note that 

without this assumption, safety stock at each distribution site can be duplicated for each supply lane. 

𝑧==]𝑙&'=𝑢("𝑥&'("
(

+ 𝑣&'" =
𝐷("

𝑌" 𝑥&'(
"

('&

(9) 

Hence, the total safety stock cost is: 

ℎ𝑃𝑧==]𝑙&'=𝑢("𝑥&'("
(

+ 𝑣&'" =
𝐷("

𝑌" 𝑥&'(
"

('&

= ℎ𝑃𝑧==]=`𝑙&'𝑢(" + 𝑣&'"
𝐷("

𝑌"a 𝑥&'(
"

('&

(10) 
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The impact of pipeline (work-in-progress) stock is relatively low, and it is least likely to be 

affected by changes in the supply chain network for the sponsor due to differing payment terms. 

Therefore, after discussing with the sponsor company, we decided to ignore pipeline stock in our model. 

 

3.4.3 Product Cost 

Since the sponsor company procures items from external suppliers and sells them to customers, 

the cost of product procurement must be added for each item bought. Since product cost is differs by 

supplier, it can be formulated as below: 

===𝑝&𝐷(𝑥&'(
(∈-'∈.&∈/

(11) 

In the sponsor’s case, all the related costs such as system transaction fee were included in product cost 

itself. 
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3.4.4 Formulation Overview 

Next, with related constraints and a new binary decision variable 𝑦&' meaning whether supplier i 

supplies to distribution site k, our entire inventory-integrated supply chain design problem (ISCDP) can 

be defined as follows: 

(ISCDP) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	

= ==𝑡&'+ 𝐷(𝑥&'(
(∈-'∈.&∈/

+===𝑡'(0

(∈-'∈.&∈/

𝐷(𝑥&'( +===𝑤'𝐷(𝑥&'(
(∈-'∈.&∈/

+
ℎ𝑃
2𝑌

===𝑟'𝐷(𝑥&'(
(∈-'∈.&∈/

 

+ℎ𝑃𝑧== ]=`𝑙&'𝑢(" + 𝑣&'"
𝐷("

𝑌"a𝑥&'(
"

(∈-'∈.&∈/

+===𝑝&𝐷(𝑥&'(
(∈-'∈.&∈/

(12) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	 

== 𝑥&'(
'∈.&∈/

= 1, ∀𝑗 ∈ 𝐶 (13)	

=𝑦&'
&∈/

≤ 1, ∀𝑘 ∈ 𝑊 (14)	

𝑥&'( ≤ 𝑦&' , ∀𝑖, 𝑘, 𝑗 ∈ 𝑆,𝑊, 𝐶 (15)	

𝑥 ≥ 0,			𝑦 = {0,1} (16), (17) 

The first constraint (13) ensures demand for each customer is fulfilled. The second constraint (14) forces 

the model to choose at most one supplier for each distribution site. The third constraint (15) ensures that 

no flow occurs between supplier i and distribution site k unless supplier i supplies to distribution site k. 

The last constraints (16), (17) prevent negative flows and make y binary. As the objective function (12) 

shows, our problem is clearly a MINLP problem with the safety stock cost term and binary variables. 

To simplify annotations for later use, we combined multiple terms with: 

𝑎&'( = 𝑡&'+ 𝐷( + 𝑡'(0 𝐷( + 𝐷(𝑤' +
ℎ𝑃
2𝑌

𝑟'𝐷( + 𝑝&𝐷( 

𝑏&'( = 𝑙&'𝑢(" + 𝑣&'"
𝐷("

𝑌"
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𝐻 = ℎ𝑃𝑧 

Therefore, the entire problem can be written as follows: 

(ISCDP’) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	= ==𝑎&'(𝑥&'(
(∈-'∈.&∈/

+𝐻== k=𝑏&'(𝑥&'("
(∈-'∈.&∈/

(18) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	 

== 𝑥&'(
'∈.&∈/

= 1, ∀𝑗 ∈ 𝐶 

=𝑦&'
&∈/

≤ 1, ∀𝑘 ∈ 𝑊	

𝑥&'( ≤ 𝑦&' , ∀𝑖, 𝑘, 𝑗 ∈ 𝑆,𝑊, 𝐶	

𝑥 ≥ 0,			𝑦 = {0,1} 

3.5 Tools Utilized 

To take advantage of modeling flexibility, our models were developed and implemented using 

Python 3 and Gurobi version 9.5.2, and executed on MIT's Supercloud, providing a secure and fast 

environment for running the code. Excel 16.72 and Tableau 2023.1 were used for further analysis and 

visualization of the results. Additionally, Microsoft Excel and Access were utilized for preliminary 

analyses, such as product segmentation. 

 

3.6 Omnichannel Fulfillment Options 

After developing the model outlined in Section 3.4, we created several options to help the sponsor 

company identify the best supply chain strategy. Specifically, we proposed four options to modify supply 

chain network structure for the targeted items: 

a. Inventory-integrated model / The suggested formulation in Section 3.4.5. 

b. Inventory-integrated model with direct ship 
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c. Inventory-integrated model with peer-to-peer cross-docking 

d. Use of Central Warehouse 

 

3.6.1 Direct Ship 

Direct ship literally means shipping products from suppliers directly to customers, for which we 

created new lanes (between supplier i and customer j). Introducing this option produced a new trade-off 

between multiple costs. As shown in Figure 7, choosing direct ship makes sense when direct shipping 

cost is lower than the sum of inbound and outbound transportation cost, warehouse handling cost, and 

inventory cost. Due to its higher costs, direct shipping is not typically preferred over standard 

transportation. Therefore, the potential benefits of using direct shipping lie in the savings generated from 

the elimination of distribution site-related expenses. 

Figure 7 

Difference in Cost Factors between Normal Shipment and Direct Ship 

 

To deal with direct ship, we introduced new decision variables 𝑥&(! , the fraction of demand of customer j 

fulfilled with direct ship from supplier i. 
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==𝑡&(!

(∈-&∈/

𝐷(𝑥&(! (19) 

Then the problem definition becomes: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	===𝑎&'(𝑥&'(
(∈-'∈.&∈/

+𝐻== k=𝑏&'(𝑥&'("
(∈-'∈.&∈/

+==𝑡&(!

(∈-&∈/

𝐷(𝑥&(! (20) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	 

== 𝑥&'(
'∈.&∈/

+=𝑥&(!

&∈/

= 1, ∀𝑗 ∈ 𝐶 (21)	

=𝑦&'
&∈/

≤ 1, ∀𝑘 ∈ 𝑊	

𝑥&'( ≤ 𝑦&' , ∀𝑖, 𝑘, 𝑗 ∈ 𝑆,𝑊, 𝐶	

𝑥 ≥ 0,			𝑦 = {0,1} 

3.6.2 Cross-docking and Peer Replenishment 

The next option we considered was cross-docking and peer replenishment, which involved 

creating new lanes for moving products from one site to another (lateral transshipment), something that 

the sponsor company is now experimenting with. While this would increase transportation costs and lead 

time and add a new cost element in the form of cross-docking costs, the company could benefit from 

lower warehouse handling or inventory holding costs at the first distribution site.  

The cost structure associated with this fulfillment option is dependent on the distance between the 

first distribution site and the second distribution site. If the lead time is sufficiently short, the second 

distribution site can assume immediate shipment from it, thereby eliminating the need for inventory. In 

such cases, the cost of cross-docking is calculated as the sum of transportation costs from the first 

distribution site to the second distribution site, and from the second distribution site to the customer, 

warehouse handling and inventory cost at the first distribution site, and the cost of the cross-docking 

process at the second distribution site. However, if the lead time exceeds the threshold, the cost of 

handling and inventory at the second distribution site must also be considered. It is important to note that 
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the variability of supply lead time for the second distribution site was disregarded for our case due to the 

stability of the lead time for internal shuttle shipment, which results in the assumption that the safety 

stock volume is negligible, with the fact that the coefficient of variation was also very small. To 

incorporate this option into our model, we developed the following algorithm: 

 

Algorithm 1 Cross-docking / Peer Replenishment Option Optimization 
1: For each distribution site-customer combination, do: 

   If the distance between the distribution site and the customer > the threshold, 
      let 𝑡′'( = min {unit inbound transportation cost + unit outbound transportation cost +  
      unit cross-docking cost for any cross-docking distribution sites possibly used for the    
      specified distribution site-customer combinations}, 
   otherwise, 
      let 𝑡′'( = min {unit inbound transportation cost + unit outbound transportation cost +  
      unit warehouse handling cost and unit cycle stock cost for any cross-docking     
      distribution sites possibly used for the specified distribution site-customer  
      combinations}. 

2:       Add 𝑠'(, the intermediate distribution site with the minimum cost for cross-docking    
      from distribution site k to customer j to the set 𝑊6. 

3:    If 𝑡'(0  > 𝑡6'(,	
      replace 𝑡'(0  with 𝑡′'(. 

4: Execute optimization. 
If 𝑥&'( > 0  ∀𝑠'( ∈ 𝑊6, 
   keep 𝑠'(, 
otherwise, 
   exclude 𝑠'( from 𝑊6. 

5: Return the optimization result and 𝑊6. 
 

As shown in the algorithm and Figure 8, the cross-docking / peer replenishment model virtually 

reduces outbound transportation cost for specific lanes, which may incentivize the whole network to shift 

flows from other lanes to them to take advantage of cheaper transportation cost or cheaper warehouse 

handling / inventory cost at the first distribution site, especially with pooling effect of safety stock. From 

a practical business perspective, cross-docking would be advantageous in two situations: when large 

inbound rate differences exist or large cost structure differences between sites exist. 
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Figure 8 

Difference in Cost Factors between Normal Shipment and Cross-docking 

 

 

3.6.3 Central Warehouses 

The third omnichannel option involves the use of central warehouses, which serve the same purpose 

as regular distribution sites but are typically larger and have lower warehouse handling and inventory 

costs. However, shipment methods from central warehouses are limited to two options: either through 

drop ship to customers using third-party logistics, which can be more expensive than standard outbound 

transportation, or by cross-docking at other distribution sites. Consequently, there is a trade-off between 

reduced warehousing or inventory costs and the potential for increased transportation expenses. Since 

central warehouses can be treated similarly to standard distribution sites, with the exception of their 
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costing structure, no adjustments are needed to our model itself. We simply need to modify the 

parameters of our cross-docking model. The difference between normal shipment and shipment from 

central warehouses is summarized in Figure 9. 

 

Figure 9 

Difference in Cost Factors between Normal Shipment and Central Warehouses 

 

 

3.7 Algorithm 

Given that our problem is a MINLP, a computationally complex problem known to be NP-hard, it 

is crucial to discuss the various algorithms that can efficiently solve the problem with an acceptable level 
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of optimality. In this chapter, we provide a comprehensive overview of the methods we employed to 

tackle the MINLP problem and achieve the desired outcomes. 

 

3.7.1 Gurobi Optimizer and Reformulation to Quadratic Programming 

Gurobi Optimizer is a mathematical optimization solver that solves LP, QP, and IP (Luce, 2022). 

To solve non-linear programming problems, non-linear terms must be quadratic (𝑎𝑥" + 𝑏𝑥 + 𝑐), which 

lead to reformulation of our objective function and constraints. Letting 𝑍&'" ≥ ∑ 𝑏&'(𝑥&'("( ≥ 0, our 

formulation became quadratic, and we call the problem “quadratic inventory-integrated supply chain 

design problem (QISCDP). 

(QISCDP) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

===𝑎&'(𝑥&'(
(∈-'∈.&∈/

+𝐻== "𝑍&'"
'∈.&∈/

=	

===𝑎&'(𝑥&'(
(∈-'∈.&∈/

+𝐻==𝑍&'
'∈7&∈/

(22) 

subject to		

=𝑏&'(𝑥&'("

(∈-

≤ 𝑍&'" , ∀𝑖, 𝑘 ∈ 𝑆,𝑊 (23)	

= = 𝑥&'(
'∈.&∈/

= 1,						∀𝑗 ∈ 𝐶	

=𝑦&'
&∈/

≤ 1,						∀𝑘 ∈ 𝑊	

𝑥&'( ≤ 𝑦&' ,						∀𝑖, 𝑘, 𝑗 ∈ 𝑆,𝑊, 𝐶							

𝑥 ≥ 0,			𝑦 = {0,1} 

As the entire problem now comprises solely of quadratic and linear constraints, it can be efficiently 

solved using Gurobi optimization software. Furthermore, owing to the convexity of the objective function 

(proof of which can be found in the appendix, Proof 1), any local optimal solutions that are feasible are 
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also globally optimal, and Gurobi can effectively identify and reach such solutions. By default, Gurobi 

implements branching algorithms such as branch-and-cut for integer decision variables, thereby providing 

a near-optimal solution for our problem (Gurobi Optimization, 2017). Our parameters for the mixed-

integer programming thresholds (MIPGap, FeasibilityTol, and IntFeasTol) are all 1e-08. A similar 

reformulation can be found in You and Grossmann’s research (2008). 

 

3.7.2 Outer Approximation for Inventory-integrated Network Optimization 

In our pursuit of a faster solution for the ISCDP problem, we devised a bespoke algorithm 

utilizing outer approximation, which effectively divides the problem into two distinct problems: an NLP 

master problem and a MILP subproblem. Since our problem can be viewed as a quadratic programming 

problem when the supplier binary decision variables are fixed, and the objective function is both convex 

and differentiable, except the point of 𝑥&'( = 0, we recognized that leveraging outer approximation could 

significantly expedite the solving process. 

First, the algorithm solved the NLP master problem, with initial fixed 𝑦&' decision variables and 

obtained the optimal 𝑥&'( and the upper bound. This, in turn, facilitated the reformulation of the objective 

function by introducing new decision variables 𝜁&'08 and linearized approximation constraints. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝜁&'
08 (23) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	

𝜁&'
08 ≥ 𝑓(𝑥∗) + ∇𝑓(𝑥∗)$(𝑥 − 𝑥∗) (24) 

Except the point of non-differentiability ∑ 𝑥&'((∈- = 0, with 𝑥&'(∗  optimal solutions, the right-hand side of 

the constraint above can be revised as: 

𝑓(𝑥∗) + ∇𝑓(𝑥∗)$(𝑥 − 𝑥∗) ==𝑎&'(𝑥&'(∗

(∈-

+𝐻k=𝑏&'(𝑥&'(∗"
(∈-

+s𝑎&') +𝐻
𝑏&')𝑥&')∗

"∑ 𝑏&'(𝑥&'(∗"(∈-

𝑎&'" +𝐻
𝑏&'"𝑥&'"∗

"∑ 𝑏&'(𝑥&'(∗"(∈-

⋯ 𝑎&': +𝐻
𝑏&':𝑥&':∗

"∑ 𝑏&'(𝑥&'(∗"(∈-
u v

𝑥&') − 𝑥&')∗

𝑥&'" − 𝑥&'"∗
⋮

𝑥&': − 𝑥&':∗
x (25)
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Note that the square rooted term is a weighted 𝑙" norm. As for the non-differentiable point, we assumed 

sub-gradient of the second term of the objective function as zero (refer to Proof 2). 

Solving MILP with the linearized term gives the optimal solutions for 𝑥&'( and 𝑦&' and the lower bound, 

which then were used as the termination criteria and the inputs for the next iteration. The entire algorithm 

is shown below: 

Algorithm 2 Outer Approximation for ISCDP 
1: Initialize 𝐿𝐵 = −∞,𝑈𝐵 = ∞,	

		𝜖 = 0.001	𝑜𝑟	0.0001, 𝑘 = 1, 𝑦&'∗ ∈ 𝑌	(𝑌	𝑖𝑠	𝑎𝑛	𝑖𝑛𝑡𝑖𝑎𝑙	𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒	𝑠𝑒𝑡) 
2: While (𝑔𝑎𝑝 > 𝜖		𝐴𝑁𝐷		𝑘 ≤ 100) do 
3:    Solve NLP master problem with  𝑦&'∗  and get 𝑥&'(∗  

   Update UB 
4:    Add an outer approximation constraint to MILP subproblem: 

   If ∑ 𝑥&'((∈- ≠ 0, 
       𝜁&'08 ≥ 𝑓(𝑥∗) + ∇𝑓(𝑥∗)$(𝑥 − 𝑥∗), 
   otherwise, 
       𝜁&'08 ≥ 𝑓(𝑥∗) + ∇𝑔(𝑥∗)$(𝑥 − 𝑥∗) 

             where 𝑔(𝑥) = 𝑎&'(𝑥&'( 
5:    Solve MILP subproblem and get 𝑥&'(∗ 	𝑎𝑛𝑑	𝑦&'∗  

   Update LB 
6:    Add an integer cut to prevent the same combinations of binary variables: 

   𝐼𝐶' = �∑ 𝑦;;#
∗

;,;#∈=" −∑ 𝑦>>#
∗

>,>#∈:" ≤ �𝐵'� − 1�	
   𝑤ℎ𝑒𝑟𝑒	𝐵' 	𝑖𝑠	𝑎	𝑏𝑎𝑠𝑖𝑠	𝑠𝑒𝑡	𝑎𝑛𝑑	𝑁' 	𝑖𝑠	𝑎	𝑛𝑜𝑛	𝑏𝑎𝑠𝑖𝑠	𝑠𝑒𝑡	𝑓𝑜𝑟	𝑦&'∗ 	 

7:    Calculate 𝑔𝑎𝑝 = (𝑈𝐵 − 𝐿𝐵)/𝐿𝐵 
   Update 𝑘 = 𝑘 + 1 

8: End while 
9: Return UB and corresponding solutions 𝑥&'(∗ 	𝑎𝑛𝑑	𝑦&'∗  
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4 RESULTS AND DISCUSSION 

This section walks through the model results for each item. To ensure an apples-to-apples 

comparison, we change only the flows between the “As-Is” baseline and the “Model” solution. The same 

cost logic is used to calculate total dollar reductions and the total amount of cases is the same. For the 

flows, we show the differences moving from the current results of the basic three-tier model to the new 

model with additional fulfillment options and cross-docking. For the inventory comparisons, we include 

three scenarios: the actual current inventory level, a target inventory level using the standard equation and 

“As-Is” flows, and the full model solution for inventory. Finally, we show for each item how the model 

suggests changes to inventory for each distribution site. 

 

4.1 SKU1 Model Results 

As a reminder, SKU1 is a dry item with moderate to high volume, relatively high variability of 

demand, a high percentage of customer orders with 2 days or more of lead time, and a moderate level of 

inventory. As can be seen in Table 3, inbound and outbound costs for SKU1 are relatively balanced in the 

historical data.  

 

Table 3 

Cost Result Summary for SKU1 

Cost Summary (Thousand USD) As-Is ($) Model ($) Difference to 
As-Is ($) 

Difference 
(%) 

Transportation Cost 2,832 2,592 (240) -8.5 
 Inbound Transportation Cost 1,410 1,356 (54) -3.8 
 Cross-dock Cost - 9 9 N/A 
 Direct Ship Cost - 66 66 N/A 
 Outbound Transportation Cost 1,422 1,160 262 -18.4 
Warehousing Cost 500 483 (17) -3.5 
Inventory Cost 218 209 (9) -4.1 
 Cycle Stock Cost 71 66 (5) -6.6 
 Safety Stock Cost 147 143 (4) -2.9 
Subtotal Logistics Cost 3,550 3,284 (267) -7.5 
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Product Cost 36,305 36,273 (32) -0.1 
Total Supply Chain Cost 39,855 39,556 (299) -0.7 

 

 The model results show an 8.5% reduction in transportation cost, which comes primarily through 

a large outbound transportation reduction of 18.4%. Major outbound realignments include a shift of 

volume towards the Central Florida site, which is centrally located in the state and minimizes outbound 

distance to customers, as well as a shift away from the high-cost Chicago site to the lower-cost  

Wisconsin site. Warehouse handling cost is also reduced due to this shift from high-cost to low-cost sites. 

Inventory cost is down 4.1%, primarily due to a new direct ship lane that opens up from the Texas supply 

point to a large demand node in Central Texas. This also has additional effects in lowering inbound, 

warehouse, and outbound costs in the Texas area as none of these cases need to flow through the sponsor 

company network. The model does open 2 cross-dock consolidation flows for this item, in the Louisiana 

site and the Idaho site. Inventory is no longer carried at these sites and instead is drawn from surrounding 

distribution sites. Figure 10 shows a national level visualization of the flows including historical actual 

flows and the new model flows. 
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Figure 10 

Network Flow Comparison for SKU1 

 

SKU1 has had some out-of-stock issues over the past year, and this is reflected in the inventory 

data shown in Figure 11. While the sponsor company usually targets ~98% fill rate to customers, SKU1 

achieved ~88-92% depending on the distribution site. Using the inventory equation discussed in Section 

3.4.2 with actual historical flows, target inventory levels are 76% higher than actual to achieve a 98% fill 

rate target. The integrated model solution, however, brings back inventory levels close to actual levels due 

to the flow realignments, cross-docking, and new direct ship lane.  
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Figure 11 

Inventory Comparison for SKU1 

 

Figure 12 compares model inventory levels with historical actuals by site. Most sites have only 

minimal changes, however, the model chooses not to use central warehouses for this item. Currently, the 

sponsor company does have substantial inventory at central warehouses for infrequent shipments to 

distribution sites. This appears to be primarily backup storage and replenishment. The model adds over 

1,000 cases of inventory to four distribution sites. These sites have historically had out of stock issues and 

have a mix of long supplier lead times combined with variable demand (coefficient of variation ranging 

from 0.8 to 2.0).  
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Figure 12 

Inventory Comparison by Site for SKU1 
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4.2 SKU2 Model Results 

As a reminder, SKU2 is a cooler item with moderate volume, low variability, and also a high 

percentage of 2+ day customer lead time. This item has a relatively high overall inventory level. As can 

be seen in Table 4, inbound transportation makes up the majority of total transportation cost.  

 

Table 4 

Cost Result Summary for SKU2 

Cost Summary (Thousand USD) As-Is ($) Model ($) Difference to 
As-Is ($) 

Difference 
(%) 

Transportation Cost 3,593 3,471 (122) -3.4 
 Inbound Transportation Cost 2,761 2,568 (193) -7.0 
 Cross-dock Cost - 30 30 N/A 
 Direct Ship Cost - - - N/A 
 Outbound Transportation Cost 832 873 41 4.9 
Warehousing Cost 389 379 (9) -2.4 
Inventory Cost 195 145 (50) -25.7 
 Cycle Stock Cost 70 75 6 8.2 
 Safety Stock Cost 125 69 (56) -44.6 
Subtotal Logistics Cost 4,177 3,995 (182) -4.3 
Product Cost 53,017 53,011 (6) 0.0 
Total Supply Chain Cost 57,194 57,006 (187) -0.3 

 

SKU2 has the smallest reduction in total logistics cost, with the majority of the savings coming 

from inbound transportation cost and safety stock reduction. As SKU2's product cost is significantly 

higher than the other SKUs, the reduction in safety stock had a greater impact. Although inbound 

transportation cost was reduced, outbound transportation cost increased as the model prioritized reducing 

the high inbound cost. Warehouse handling and product cost were minimally changed. The model did 

open two small cross dock lanes however these did not substantially reduce the overall supply chain cost. 

No direct ship lanes were opened, and central warehouse was not used. Figure 13 shows a national level 

visualization of the flows including historical actual flows and the new model flows. 
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Figure 13 

Network Flow Comparison for SKU2 

 

SKU2 may have more inventory than needed to maintain the target service level, as indicated by 

Figure 14 below. Using the inventory equation in Section 3.4.2 with actual flows suggests a reduction of 

11% is possible from actual inventory levels, and a further reduction of 17% is suggested by the 

integrated model with new flows.  
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Figure 14 

Inventory Comparison for SKU2 

 

Looking at specific sites, the model suggests one site in Maryland to increase inventory by ~800 cases 

which is an outlier. This particular distribution site has a favorable inbound cost compared to other sites, 

and the model takes advantage of this by consolidating inbound flows at this location. A substantial 

portion of this inventory increase is due to cycle stock from the higher flows. Most sites, however, reduce 

inventory in the model. The most substantial decreases are in West Coast sites with high inbound cost 

from the East Coast suppliers for this item. Figure 15 illustrates these changes in inventory levels. 
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Figure 15 

Inventory Comparison by Site for SKU2 
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4.3 SKU3 Model Results 

Finally, SKU3 is a frozen item with very high volume and very low variability, with close to 80% of 

orders from customers needing next day delivery. This item has a high inventory level. As can be seen in 

Table 5, the majority of historical transportation cost for SKU3 comes from outbound transportation cost. 

 

Table 5 

Cost Result Summary for SKU3 

Cost Summary (Thousand USD) AsIs ($) Model ($) Difference to 
AsIs ($) 

Difference 
(%) 

Transportation Cost 15,467 14,380 (1,088) -7.0 
 Inbound Transportation Cost 5,871 5,635 (235) -4.0 
 Cross-dock Cost 1 379 368 N/A 
 Direct Ship Cost -  808 808 N/A 
 Outbound Transportation Cost 9,595 7,566 (2,029) -21.1 
Warehousing Cost 3,691 3,414 (276) -7.5 
Inventory Cost 234 118 (116) -49.4 
 Cycle Stock Cost 61 66 5 8.6 
 Safety Stock Cost 173 52 (121) -69.9 
Subtotal Logistics Cost 19,392 17,912 (1,480) -7.6 
Product Cost 56,771 56,771 (0) 0.0 
Total Supply Chain Cost 76,163 76,683 (1,480) -1.9 

 

This item had the largest reduction in both total supply chain cost and total logistics cost achieved 

among all three products, mainly due to the significant decrease in outbound transportation cost, safety 

stock cost, and the use of new omnichannel fulfillment options. Although there was a slight increase in 

cycle stock cost, all other types of costs were reduced, similar to SKU1. The success in reducing 

outbound transportation cost through the use of omnichannel fulfillment is notable, as the outbound cost 

was a significant burden for this particular item. This item has a large concentration of customer demand 

near the supply point in Chicago, which the model switches to direct ship to minimize cost. This item also 

uses both cross-docking lanes and peer replenishment in the model. Figure 16 shows a national level 

visualization of the flows including historical actual flows and the new model flows. 
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Figure 16 

Network Flow Comparison for SKU3 

 

 

This item has the largest reduction in inventory of the items examined. The sponsor company 

carries approximately 14 days of inventory for this item as measured across the entire network, however 

the coefficient of variation is 0.07, indicating very stable demand. Using the inventory equation in Section 

3.4.2. and actual historical flows, inventory targets come in 55% lower than actual to maintain the target 

service level. The integrated model, with new flows, is 12% higher than this amount. Figure 17 compares 

these inventory levels. 
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Figure 17 

Inventory Comparison for SKU3 

 

Though the model reduces inventory overall, four sites add over 1,000 cases of inventory due to 

changes in network flows. These distribution sites are all relatively low cost in the network. Fives sites 

reduce inventory levels by over 5,000 cases, due to the combination of new flows, direct ship taking 

inventory out of the network, and new cross-docking lanes. Most of these sites are near the Chicago area. 

Figure 18 shows a national level visualization of the flows including historical actual flows and the new 

model flows. 
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Figure 18 

Inventory Comparison by Site for SKU3 

 

 

4.4 Omnichannel Fulfillment Options Insights 

This section provides a detailed analysis of the model's treatment of omnichannel options, 

including both numerical and business perspectives, following the more general overview of cost 

structure and inventory placements in the previous chapters (4.1 through 4.3). 
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distribution site, as direct shipping is generally expensive for longer distances. However, the impact of 

this choice is not insignificant due to the large amount of flow, and it was a cost-effective decision for the 

model that attempted to shift flows whenever possible. Direct ship was not used for SKU2 due to lower 

overall demand and because demand is not located near supply points. For SKU3, more direct ship lanes 
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reason for the choice of direct shipping may have been the relatively high warehouse and transportation 

costs of the sites around the Chicago area. 

In summary, the model's results suggest that direct ship is most advantageous for customers 

located close to suppliers, or in areas where transportation or warehouse handling costs are higher, such as 

in larger cities. However, the current method used for estimating direct ship costs may be too simplistic 

and may not accurately capture the actual future costs with involved in this new arrangement with 

suppliers and customers. Thus, further improvements to the cost estimation process are needed for more 

precise analyses. 

 

4.4.2 Cross-docking and Peer Replenishment 

Cross-docking / peer replenishment was implemented as another omnichannel option, with 

varying levels of usage across the different products. Surprisingly, despite the theoretical disadvantage of 

having a shorter lead-time threshold having to hold inventory than the other SKUs, SKU3 had the highest 

utilization of cross-docking lanes, while SKU2 had the lowest. One possible explanation is that outbound 

transportation cost, which is a major driver for cost savings with cross-docking, was relatively lower for 

SKU2 compared to the other products. Another possible explanation is that demand and supply variability 

for SKU2 might be more stable, resulting in less motivation to switch from existing outbound 

transportation to cross-docking, where safety stock can be consolidated at the first distribution sites. This 

interpretation is plausible given that SKU2 is a common item that is frequently used by customers. 

In addition to these implications, upon analyzing the result maps, it becomes evident that the first 

leg of the cross-docking lanes (from the first distribution sites to the second distribution sites) is 

considerably longer than the second leg (from the second distribution sites to the customers). This 

observation suggests that outbound transportation cost is a significant challenge for the entire supply 

chain network, and it is better to minimize it by utilizing distribution sites that are close to customers and 

reducing the distance of outbound transportation. In this regard, cross-docking can play a crucial role in 
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reducing the overall outbound cost by reallocating it to internal transportation cost, which is typically less 

expensive than outbound last-mile cost. 

In summary, cross-docking is a beneficial solution when outbound transportation costs 

significantly impact the entire supply chain network or when pooling inventory has a higher impact due to 

factors such as volatile demand or variable supply lead times. 

 

4.4.3 Central Warehouses 

Drop shipping from the central warehouses was not utilized for any item, due to the higher cost. 

However, for SKU3, central warehouses were employed as origin points for cross-docking to other sites. 

The costs of outbound transportation, warehouse handling, and inventory for other distribution sites are 

crucial factors in determining whether central warehouses were more advantageous. Additionally, in 

practice, the use of central warehouses may be driven by capacity constraints, which we did not 

incorporate in this study. For a multi-item model, it is possible that distribution site capacity could be a 

limiting factor, and central warehouses could be leveraged to alleviate capacity constraints at other 

distribution sites especially for CZ segmentation items with low demand. These kinds of items would also 

benefit from a risk pooling effect for inventory. 

 

4.5 Model Solve Time Insights 

In this section, we present insights obtained from our model in terms of efficiency, in addition to 

the solutions themselves shown in the previous sections. 

In addition to our focus on the projected cost savings, we aimed to create a model that could 

quickly and efficiently scale to real world problem sizes. This requires a fast solution time. As mentioned 

earlier, part of our effort to accomplish this focused on limiting the model variables to as small a scope as 

possible. In addition, we utilized a tailored outer approximation method to formulate and solve our 

MINLP problem and conducted a comparison with Gurobi's default solver. To obtain initial feasible 
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solutions of binary decision variables for the outer approximation subproblem, we assumed that every 

distribution site is served from the first supplier (the smallest supplier number). Our computational 

experiments were performed on Intel Xeon Gold 6248 or Intel Xeon Platinum 8260 processors in the MIT 

supercloud environment, where the number of nodes and the CPU were automatically selected. Table 6 

presents the execution times of each method for SKU1, based on 5 independent trials. 

 

Table 6 

Execution Time for Each Method 

Method Max (sec) Min (sec) Average (sec) 
Gurobi Default 45.67761397 44.23880315 44.60165119 
OA (𝜀 = 0.001) NLP Subproblem 2.677587986 2.509674072 2.579761171 

MILP Master 0.660363913 0.021645069 0.150467968 
Total 3.337951899 2.531970978 2.730229139 

OA (𝜀 = 0.0001) NLP Subproblem 5.426824808 5.192915201 5.325380659 
MILP Master 1.026623964 0.1076231 0.293673038 
Total 6.348081112 5.305934191 5.619053698 

 

To assess the quality of the solutions, we compared the outcomes generated by our outer 

approximation (OA) with those produced by the default algorithm of Gurobi. The difference between the 

solutions obtained by OA and Gurobi was calculated by taking one minus the absolute value of the 

solution from OA divided by the solution from the default algorithm. Table 7 presents the results of the 

comparison for SKU1. We are pleased to share we were able to significantly reduce the solve time 

without any meaningful loss of solution quality. 

 

Table 7 

Solution (Total Supply Chain Cost) Difference between Methods 

 Solution Difference (%) 
OA (𝜀 = 0.001) 3.76e-1 
OA (𝜀 = 0.0001) 7.00e-9 
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Firstly, we were able to achieve a significant reduction in execution time, almost eight times 

faster than Gurobi's default solve time, by implementing our outer approximation algorithm that is 

effective for the block structure commonly seen in supply chain problems. It is worth noting that the 

MILP primary problem had a much lower execution time compared to the NLP subproblem, possibly due 

to the small feasible sets resulting from the limited number of suppliers and fewer branching times 

required for MILP. Additionally, the constraints that restrict the number of suppliers each distribution site 

can choose allowed Gurobi to efficiently solve the integer problem. 

Secondly, we observed a significant impact of the termination criteria on run time, with a nearly 

doubled time when the criterion was tightened. Given the generally larger tolerance for optimality in 

supply chain network design problems, loosening the criteria can be a practical way to speed up the 

model, particularly when dealing with more extensive data or larger networks. However, considering the 

average cost reduction percentage for the entire supply chain, the solution difference when 𝜀 = 0.001 can 

be relatively impactful, this, a stricter criterion such as 0.0001 was preferable in our case, balancing 

optimality and speed effectively. 

Overall, our tailored algorithm successfully reduced the execution time and proved to be highly 

effective for similar problems. Nevertheless, choosing the appropriate termination criteria, depending on 

problem characteristics, size, and computational power available, is crucial to achieving an optimal 

balance between speed and optimality. To further improve the overall performance, development of more 

sophisticated algorithm might be necessary. 

 

4.6 Expandability and Limitations 

This section outlines potential avenues for expanding our existing model into diverse applications 

and highlights major elements that could not be integrated due to constraints of time and workforce. By 

illustrating these factors, this paper aims to provide valuable insights for future researchers and projects 

undertaken by the sponsor company. 
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4.6.1 Expandability 

Our model's expandability is a significant advantage for the sponsor company, as it can be easily 

extended to a multi-item model by introducing more granular decision variables (e.g., adding another 

dimension to 𝑥&'( to consider item variation). This would enable optimization of the entire supply chain 

for all SKUs, albeit with some new constraints to be introduced. For instance, distribution site capacity 

constraints become a concern when changing flows for all items, as high-volume concentration at a single 

distribution site could potentially violate capacity. However, fortunately, it is possible to directly apply 

the model to other items even without changing its constraints or decision variables, which could still lead 

to new discoveries. Additionally, the model can accommodate other omnichannel options, including 

creating new larger distribution sites or utilizing shuttle yards (placing additional facilities between 

distribution sites and customer to deal with last-mile deliveries). These adjustments are generally easy, as 

the consideration of new distribution sites can be achieved through the introduction of new binary 

decision variables to control open / close conditions for them, as well as the use of cheaper inventory or 

warehouse handling costs to encourage inventory pooling. 

Also, our model's incorporation of binary decision variables for each supplier-distribution site 

lane allows for the easy integration of fixed costs for selecting specific suppliers. This is particularly 

relevant when each supplier has a "minimum volume" requirement for the total flow from the supplier, 

ensuring that suppliers can maintain an economy of scale.  

Lastly, our tailored outer approximation algorithm can be applied to omnichannel options without 

changing the original structure of the model. This approach not only accelerates the solving time for our 

omnichannel options but also proves to be highly effective when the number of decision variables or 

constraints increases. 

In summary, these flexible features are made possible through the tailored development of the 

model using Python and Gurobi, which sets it apart from package software that typically requires a fixed 

structure for all model types. 
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4.6.2 Limitations 

While our model is highly flexible, there are limitations that require improvement in the model 

structure or algorithm itself in some cases. One limitation arises when expanding the model to a multi-

item model, where the number of decision variables and constraints increase significantly due to the 

structure of decision variables representing all possible lane combinations. This results in a higher 

computational power requirement or infeasibility, necessitating more efficient algorithms or changing 

formulations. 

Multi-echelon inventory can also be problematic when considering more complicated 

omnichannel options or changing current assumptions. For instance, assuming safety stock is never 

placed at the second distribution site for peer-to-peer cross-docking might require reconsideration if 

demand variability is erratic or lead time for internal shipment is variable. As safety stock is placed for 

multiple tiers, new factors like each distribution site's coverage or demand propagation from downstream 

to upstream of the supply chain need to be considered, resulting in further complexity of the model's 

underlying equations. 

Another limitation is the current model's assumption of limiting the number of suppliers each 

distribution site can accommodate to only one. While this is a realistic assumption for our sponsor's 

company, which rarely assigns two or more suppliers to a single distribution site for the same product, 

other industries or companies may have more flexibility. Changing this assumption will result in 

duplicating safety stock for different suppliers at the same distribution site, overestimating inventory 

amount or inventory cost. Moreover, as the model is specifically tailored to the sponsor company, other 

significant changes may be necessary when applying it to other companies' or organizations' cases. 

Lastly, although our outer approximation successfully solves the problem faster than Gurobi's 

default solving method, we may need to seek even more efficient algorithms by combining other 

decomposition or branching methods or using other solvers for MINLP. 
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5 CONCLUSION 

While omnichannel in B2B is not as widely studied as in B2C, it is an increasingly important 

opportunity for many companies. Our sponsor company, a large foodservice distribution company in the 

United States, is interested in expanding omnichannel fulfillment options for its customers. As we have 

shown in this paper, these options could be advantageous for both customers as well as the companies 

offering them when paired with a comprehensive review of the supply chain involved. However, this 

review will be most effective when it is end-to-end (from supplier to customer) and integrated (solved 

simultaneously across all flows and with inventory rather than sequentially). 

In addition to the specific item level discussion contained in Chapter 4, we also offer the following 

generalized recommendations: 

1) Consider applying the model to other items with a similar cost structure to SKU3. Our application 

of the model to three products demonstrated that network design can significantly reduce the total 

supply chain cost by optimizing facility use and product flows. This benefit is not limited to the 

products we tested, and the company can expand its use to more items. It is highly likely that 

products with a similar cost structure to SKU3 would be impactful, as it produced the most 

significant reduction in our case. 

2) Integrate outbound and inbound management to optimize the entire supply chain network. Our 

model revealed that the current supply chain shows signs of local optimization for inbound and 

outbound logistics, which is not necessarily optimal for the entire network. By integrating these 

two functions and changing product flows, the company can minimize total transportation cost 

and improve the efficiency of the entire supply chain network based on the results produced in 

this project. 

3) There may be an inventory reduction opportunity for items with low variability. Our model 

revealed that the current inventory levels may be excessive for these items. However, some 

customers may be concerned about level of service. Therefore, it is recommended to involve 
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customers in the implementation scheme to ensure a smooth transition. This collaborative effort 

can lead to a more optimal inventory level and improved supply chain efficiency. 

4) Explore direct ship opportunities for supply points with high volume that are located near dense 

demand points. This fulfillment method avoids inbound, warehouse, and inventory costs. 

However, this may be partially offset by the cost of new dedicated routes.  

5) Continue to pilot cross-docking and peer replenishment options. Our model revealed that for 

certain items these options can be competitive in terms of the total supply chain cost. However, 

this competitiveness is dependent on taking advantage of substantial differences in inbound costs 

between sites or other structural cost differences. Additionally, the fixed costs of setting up the 

initial cross-dock shuttle network lend itself to a “big bang” deployment to avoid large per unit 

costs related to shuttles.  

 

B2B customers are now demanding more fulfillment options, similar to what they see in the B2C 

space. With continued research and experimentation in omnichannel fulfillment, our sponsor company 

can lead the industry with new ways to delight customers while minimizing cost. The model proposed can 

help our sponsor to evaluate trade-offs when considering these new options in a single, integrated 

methodology. 
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APPENDIX 

Proof 1: Convexity of the Objective Function 

Let 𝑓(𝑥) = "∑ 𝑏&'(𝑥&'("(∈- = "∑ (�𝑏&'(𝑥&'()"(∈-  , considering 𝑏&'( ≥ 0. 

Also, let 𝑔(𝑥) = [�𝑏)))𝑥))), … , �𝑏&'(𝑥&'(]. 

𝑓(𝑥) = ‖𝑔(𝑥)‖  (the 𝑙" norm of 𝑔(𝑥)) 

Then, 

𝑓(𝜆𝑢 + (1 − 𝜆)𝑣) = ‖𝑔(𝜆𝑢 + (1 − 𝜆)𝑣)‖  

					= ‖𝜆𝑔(𝑢) + (1 − 𝜆)𝑔(𝑣)‖ ≤ ‖𝜆𝑔(𝑢)‖ + ‖(1 − 𝜆)𝑔(𝑣)‖ = 𝜆𝑓(𝑢) + (1 − 𝜆)𝑓(𝑣)  

Therefore, 𝑓(𝑥) is convex. Considering 𝑎&'(𝑥&'( is a linear function and that summation of convex 

functions is convex, the entire function is convex. Note that h, P, and z are all non-negative constants, 

which keeps convexity of the function. Refer to Ağralı et al. (2012) for a similar proof. 

 

Proof 2: Subgradient of the Function 

For the point of ∑ 𝑥&'((∈- = 0, letting 𝑐 = 0, 𝑓(0) + 𝑐(𝑥 − 0) = 𝑓(0) = 𝑓(𝑥). 

For the other points ∑ 𝑥&'((∈- = 𝜀 > 0, 𝑓(0) ≤ 𝑓(𝑥), considering 𝑏&'( and 𝐻 are positive constants. 

Therefore, 𝑓(𝑥) ≥ 𝑓(𝑎) + 𝑐(𝑥 − 𝑎) for 𝑎 = 0, 𝑐 = 0. 


