
Smarter SKU Stratification

Jiaxin Jiang & Andrew Steverson

Outline

- Motivation
- Objectives
- ► Methodology & Results
- Recommendation
- Application
- Potential Next Steps

"There has to be a better way"

- Historically, SKU Stratification was based on sales volume
- Sponsor company asked for more comprehensive analysis methods
- ► Tool to be applied to variety of relationships between manufacturer/distributor and retail customers

Objectives

To identify a better SKU stratification method for Consumer Packaged Goods companies to better serve their retailers.

To provide a ready-to-use stratification modelling package for our sponsor company.

Relevant Factors

- Sales Volume still a key consideration
- Volatility critical in forecasting and replenishment
- Profit Margin impact to the bottom line

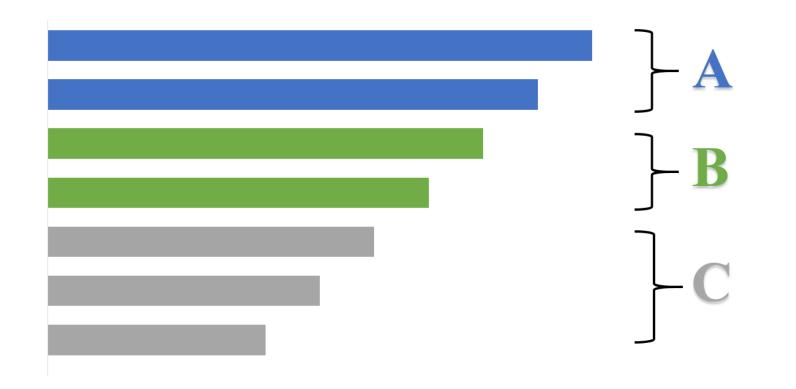
Data

Sales volume data by SKU by DC for the past two years

Current price & cost by SKU for retailer

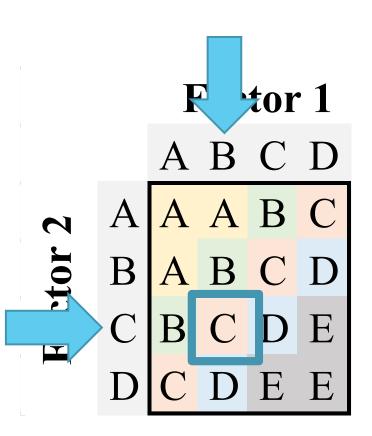
Methods Under Consideration

Single Factor


Dual Matrix

Analytical Hierarchy Process (AHP)

Clustering

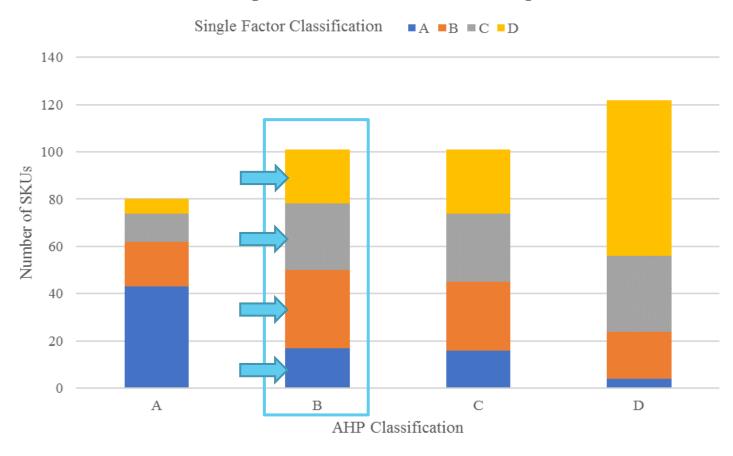

Single Factor

► Rank SKUs based on one criterion - current method

Dual Matrix

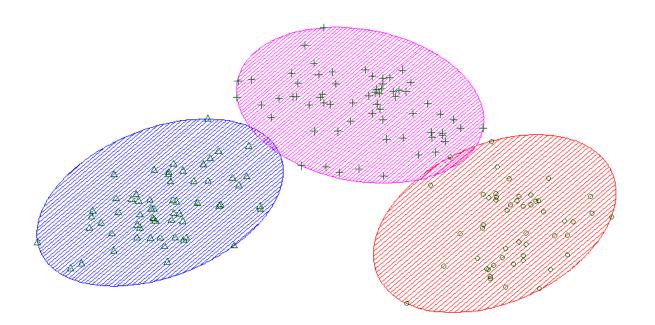
- Two sets of single factor classifications
- Cross-tabulation to determine new classification

Analytical Hierarchy Process


Pairwise comparison of importance of factors => weightage

	Sales Volume	Profit Margin	Volatility	Finan	Factor	Weight
Sales Volume	1	1	3	Eigen Vector	Sales Volume	0.43
Profit Margin	1	1	3	Calculator	Profit Margin	0.43
Volatility	1/3	1/3	1		Volatility	0.14

- ▶ Values are normalized to allow for direct comparison
- Weighted sum calculated and ranked
- Ranked sum => stratification


Analytical Hierarchy Process

AHP vs Single Factor Stratification Comparison

Clustering

- Algorithms group data points based on mathematical proximity
- ► K-means clustering for SKU stratification
- Data supplied to specialized software JMP Pro 12

Clustering

- Size of each cluster is variable & cannot be controlled
- ► Impractical to apply to inventory management

	Number of SKUs			
Cluster #	3 Clusters	4 Clusters	5 Clusters	
1	11	11	11	
2	275	277	100	
3	118	3	283	
4		113	3	
5			7	

Methods Comparison

Method	Factors Considered	Comprehensive Level	Ease of Implementation	Ability to Customize Class Size	Software Required
Single Factor	1	Low	High	High	-
Dual Matrix	2	Medium	Medium	Medium	-
AHP	3 or more	High	Low	High	Eigen Vector Calculator
Clustering	3 or more	High	Medium	Low	JMP

Recommendation

- We recommend the AHP method for SKU stratification
 - Comprehensive
 - ► Flexible
 - User determination of importance of different factors

Before and After

Product	Sales Volume
SKU 1	D
SKU 2	Α

Significant change in classification from Single Factor to AHP

Applications

A better way to focus on and invest in the important products

Forecasting

 More complex models for 'A' SKU

Service Level

Calculated per SKU, then aggregated for the classifications

$$Q^* = \sqrt{\frac{2c_t D}{c_e}}$$

$$P[StockOut] = P[x \ge k] = \frac{Qc_e}{Dc_s}$$

Service Level = 1 - P[StockOut]

c_t: Ordering Costs (\$/order)

c_e: Excess holding Costs (\$/unit/time);

c_s: Shortage costs (\$/unit)

D: Demand (units/time)

Service Level				
	Min	Max	Avg	
Α	69%	100%	95%	
В	70%	97%	91%	
С	28%	95%	84%	
D	12%	90%	72%	

Potential Drawbacks

- User input via pairwise comparison
- Misunderstanding of relationship of inputs to results

Potential Next Steps

- Exception handling
 - New products
 - **Promotions**
- Set inventory management strategies for stratification
 - ► How do customers measure company service?

Thank you

Q & A