Managing Perishables with Stochastic Supply

By Iyer N. V. Parameshwaran

Advisor: Dr. Nima Kazemi

Research Objective

Demand Surge

Perishable Commodity

Supply Variability

Demand-Supply Profile

53

Summary of Current Research

- Focus on reducing spoilage of perishables
- Supply disruptions vs uncertainty
- Surge management via information distribution

Research Sponsor

Leading private dairy company in Eastern India

'Ethical Milk Sourcing' initiative to attract and retain supplier loyalty

Focus on data management policy since inception

<u>Methodology</u>

Quantitative Analysis: Modeling

Solution Validation: Simulation

Stakeholder Feedback: Feasibility

Supply Chain Flow & Timelines

Time Series for Supply-Production-Demand

Time Period	Supply	Raw Material	Production	Finished Goods	Demand
99	500 ——		•••	•••	
100	495	→ 500	500	500 ——	
101	505	495	495	495	505
102	•••	505	505	505	500
103				•••	495

Stochastic LP: Normal Approximation

Supply Target Recommendation

Time Series without Festival Days

Time Series with Festival Day

Days	Default	Optimal	Practical	Days	Default	Optimal	Practical
-	100.000	105.263	105.263	-	100.000	105.263	110.000
-	100.000	105.263	105.263	-	100.000	105.263	110.000
Reg	100.000	105.263	105.263	Reg	100.000	126.316	110.000
Reg	100.000	105.263	105.263	Reg	100.000	105.263	110.000
Reg	100.000	105.263	105.263	Spl	100.000	116.959	110.000
Reg	100.000	105.263	105.263	Reg	100.000	105.263	110.000
Reg	100.000	105.263	105.263	Reg	100.000	105.263	110.000
Reg	-	-	-	Reg	-	-	-
Reg	-	-	-	Reg	-	-	-
Total Profit	3241.38	3758.19	3758.19	Total Profit	2257.81	3865.56	3358.81
Avg Profit	463.06	536.88	536.88	Avg Profit	322.54	552.22	479.83

Research Contribution

Mathematical model to recommend supply targets to manage demand-supply mismatch

Three-stage stochastic programming for sourcing, production and dispatch decisions

Scalable & extendable solution using open source options (Python & Google-OR Tools)

• 3-stage stochastic optimization model is the right fit

• Ability to set supply targets at time-period level is preferable

• Easy to extend and customize the solution to your context

<u>Questions?</u>

Courtesy: Unknown Author, licensed under <u>CC BY-SA-NC</u>

Backup Slides

Do not use unless necessary!!!

Sourcing Process

Primary sources of supply Role of Rovers Collection Point Bulk Milk Cooler Raw Milk Transportation

Intake

Storage

Transformation

Packing

Dispatch

Optimization Model

Symbol	Explanation				
SETS					
Т	Set of time periods within the time series, indexed by t				
1	Set of occurrences of a discrete probability of supply, indexed by i				
J	Set of occurrences of a discrete probability of demand, indexed by j				
PARAMETERS					
ΔD	Time periods between production and demand realization				
ΔS	Time periods between supply realization and production				
D	Demand expected per time period for the entire time series				
C1	The incremental cost of procurement of per unit of raw material				
C ₂	The incremental cost of production of per unit of finished goods				
C3	The incremental cost of selling per unit of finished goods to fulfill the demand				
GI	Salvage value per unit of excess raw material				
G2	Salvage value per unit of excess finished goods				
Ρ	Selling price realized for any unit sold				
В	Shortage cost of unfulfilled demand per unit				
pi ^s	Probability of the occurrence of a specific value of supply				
Sis	Scaling factor for the specific value of supply				
p/ ^p	Probability of the occurrence of a specific value of demand				
δ_{f}^{p}	Scaling factor for the specific value of demand				
Yr	Binary value representing whether a specific time period has a simultaneous				
	demand surge and supply shortage				
α ^D	The incremental surge in demand (+ve) during the relevant time period				
α ^s	The decremental wane in supply (-ve) during the relevant time period				
RANDOM VARIA	RANDOM VARIABLES				
Dt	Demand realized for time period t				
St	Supply realized for time period t				
π_t	Profit for time period t				
S_t'	The specific value of supply for time period t				
Dt [/]	The specific value of demand for time period t				
DECISION VARIABLES					
St [~]	Supply target for time period t				
S~	Supply target per time period for the entire time series				
ρ _t	Production realized for time period t				
$\rho_t(S_{t-\Delta S}^i)$	Production realized for time period t as a function of supply realized				
φ_t	The sale realized for time period t				

$max \sum_{t \in T} \sum_{i \in I} p_i^S * \sum_{j \in J} p_j^D * \pi_t$	
$s.t.\pi_t = P * \varphi_t - \left(C_1 * S_{t-\Delta S}^i + C_2 * \rho_t \left(S_{t-\Delta S}^i\right) + C_3 * \varphi_t\right)$	$\forall t \in T, i \in I, j \in J$
$+ \left(G_1 * \left(S_{t-\Delta S}^i - \rho_t \left(S_{t-\Delta S}^i \right) \right) + G_2 \right)$	
$*\left(\rho_t\left(S_{t-\Delta S}^i\right)-\varphi_t\right)\right)-B*\left(D_{t+\Delta D}^j-\varphi_t\right)$	
$\varphi_t \leq \rho_t \left(S^i_{t-\Delta S} \right)$	$\forall \ t \in T, i \in I$
$\varphi_t \leq D_{t+\Delta D}^j$	$\forall \ t \in T, i \in I$
$\rho_t \left(S_{t-\Delta S}^i \right) \le S_{t-\Delta S}^i$	$\forall t \in T, i \in I$
$D_t^j = D * \delta_j^D * (1 + Y_t * \alpha^D)$	$\forall \ t \in T, j \in J$
$S_t^i = S_t^{\sim} * \delta_i^S * (1 + Y_t * \alpha^S) \text{ OR}$	$\forall t \in T, i \in I$
$S_t^i = S^{\sim} * \delta_i^S * (1 + Y_t * \alpha^S)$	
$Y_t \in \{0,1\}$	$\forall t \in T$
$\sum_{i \in I} p_i^S = 1$	

Sample Parameter Values for Model

Parameter	Symbol	Value
Time periods between production and demand realization	ΔD	1
Time periods between supply realization and production	ΔS	1
Demand expected per time period for the entire time series	D	100
The incremental cost of procurement of per unit of raw material	C ₁	20
The incremental cost of production of per unit of finished goods	C ₂	5
The incremental cost of selling per unit of finished goods to fulfill the demand	C ₃	1
Salvage value per unit of excess raw material	G1	-1
Salvage value per unit of excess finished goods	G ₂	-2
Selling price realized for any unit sold	Р	35
Shortage cost of unfulfilled demand per unit	В	50
The incremental surge in demand (+ve) during the relevant time period	α^{D}	20%
The decremental wane in supply (-ve) during the relevant time period	α ^s	-10%
CV for demand (assumed normal distribution)	CV _D	0.1
CV for supply (assumed normal distribution)	CVs	0.05

