Drone Delivery: Deal or No Deal

Assessing Feasibility of the Delivery Drone

Blane Butcher and Kok Weng Lim

Dr. Justin Boutilier

Шiī

Overview

- Background
- Methodology
- Result
 - Operational feasibility
 - Financial feasibility
- Discussion & conclusion

A history that started with a bang

 July 1849 – Austrians sent incendiary balloons to besiege Venice

and continued

 June 1941 – Winston
 Churchill and others waiting to watch the launch of a de
 Havilland Queen Bee target drone

The Delivery Drone

 2012 / 2013 – the delivery drone craze begins (medical, surveillance, inspection, small parcel, food delivery)

The Delivery Drone

© 2019 MIT Center for Transportation & Logistics | Page 6

Delivery drone challenges

Methodology

Operational Feasibility

- Understand regulatory landscape for drone delivery
- Define feasible metrics for drone delivery
- Operational sensitivity analysis

Financial Feasibility

- Baseline financial model
- Cost sensitivity
 analysis
- Scenario analysis

Target Locations & Key Operational Metrics

Operational Feasibility – Current Scenario

With the current capabilities and scenario, all of the cities analyzed had less than 1% of their current deliveries feasible for drone delivery.

% of Orders Feasible for Drone Delivery (LA)

- < 1% of current deliveries are feasible for drone delivery.
- Payload is the primary constraint followed by airport proximity constraint.

Operational Sensitivity Analysis – Maximum Distance

>90% of customers (by number of orders) can be reached by drone when it can fly up to 55 miles round trip.

© 2019 MIT Center for Transportation & Logistics | Page 11

Operational Sensitivity Analysis – Airport Proximity

>80% of customers (by number of orders) can be reached by drone when it is allowed to fly 3 miles from airports.

Operational Sensitivity Analysis – Package Size

In terms of delivery package size, 50 - 60% of orders are 1.2 cu. ft. in volume.

Operational Feasibility – Future Scenario

With favorable improvement in technology and relaxation in regulations in the next 5 years, 8% - 18% of deliveries would be feasible for drone delivery.

Current scenario

Likely scenario in 5 years

MANAGEMENT

© 2019 MIT Center for Transportation & Logistics | Page 14

Financial Feasibility – Current vs Future

Drone delivery is only feasible under optimistic scenario as a cost saver.

NPV without premium charge (cost saver) Future scenarios in 5 years Current scenario Pessimistic Most likely Optimistic City/Region Los Angeles (2,745)(2,627)(919) 560 San Diego (1,377)(1,355)(558) 590 San Francisco (1, 439)(1, 427)(428) 339 Houston (1,371)(1.361)(481) (11) Dallas (1, 421)(1,464)(734) (669)

Cost metrics to be considered in all scenarios:

Financial Feasibility – Cost Saver vs Profit Driver

Pairing some fees with most likely and optimistic scenarios show some potential for delivery drone investment.

NPV without premium charge (cost saver) Current Scenario Descimination Most likely, Ontimistic				NPV with \$20 premium per order (profit driver)					
	Current scenario	Future scenarios in 5 years				Current	Future scenarios in 5 years		
		Pessimistic	Most likely	Optimistic		scenario	Pessimistic	Most likely	Optimistic
City/Region					City/Region				
Los Angeles	(2,745)	(2,627)	(919)	560	 Los Angeles 	(2,623)	(2,022)	1,220	6,037
 San Diego 	(1,377)	(1,355)	(558)	590	 San Diego 	(1,361)	(1,238)	582	2,808
 San Francisco 	(1,439)	(1,427)	(428)	339	 San Francisco 	(1,405)	(1,263)	53	1,494
 Houston 	(1,371)	(1,361)	(481)	(11)	 Houston 	(1,338)	(1,184)	(1)	1,072
 Dallas 	(1,421)	(1,464)	(734)	(669)	 Dallas 	(1,411)	(1,402)	(565)	(298)

Cost Sensitivity Analysis

Number of drone specialists required is the most sensitive factor for drone implementation.

Level of sensitivity to NPV (Los Angeles)

Number of drone

specialists, 100%

Discussion & Conclusion

- Changes in regulations
 - Line of sight to autonomous
 - Flight over populated areas
- Technology
 - Advancement in batteries
 - Increase in payload
 - Increase in range
 - All weather capability
- Watch for momentum in drone medical deliveries
- Wait for the best means of drone delivery service to emerge

Discussion & Conclusion

- Understanding the complex nature of delivery drone operations
- Cost savings versus profit driving

© 2019 MIT Center for Transportation & Logistics | Page 20

Appendices

Cost Sensitivity Analysis

Cost sensitivity for Los Angeles

Cost sensitivity for San Francisco

■0.5x ■1.5x

Cost sensitivity for San Diego

Cost sensitivity for Dallas

-60%

Cost sensitivity for Houston

60%

Key Assumptions

Drone capability assumptions:

- Speed: 35 mph
- Flight time: 1 hour

Initial investment cost assumptions:

- Drone price = \$10,000 per unit
- Container price = \$100 per unit, 3 cargo containers per drone
- Drone station price = \$10,000 per location (one location per depot)
- Implementation, system integration, and other administration cost = \$40,000
- The useful life of drones and containers is 5 years

Drone operating cost assumptions:

- Annual salary for drone specialist = \$60,000 per person.
- Drone maintenance cost (including battery, repairs, etc.) = \$0.10 per mile

Vehicle cost saving assumptions:

- Gas price = \$3.50 per gallon
- Energy consumption = 10 mile per gallon
- Average distance traveled per hour = 25 miles per hour

Weight Distribution for Package Size of 1.2 cu.ft.

Weight distribution for package size of 1.2 cu.ft.

Scenario Analysis – 3 possible future scenarios to be considered for financial analysis

	Current	In 5 years				
Darameters		Future Scenario 1	Future Scenario 2	Future Scenario 3		
Falameters	Base case	Pessimistics Scenario	Most likely Scenario	Optimistics Scenario		
Max Flying distance	17.5 miles	20 miles	25 miles	30 miles		
Payload	5 lb	10 lb	15 lb	20 lb		
Distance from airports	6 miles	4 miles	3 miles	2 miles		
No. of drone specialists	1 person handles 2	1 person handles 2	1 person handles 5	1 person handles 10		
required	drones	drones	drones	drones		
Total Investment cost	base case estimates	25% increase	25% reduction	25% reduction		
Drone operating cost	base case estimates based on regions	25% increase	Same as base case	25% reduction		
Gas price (\$/Gallon)	3.5	25% reduction	Same as base case	25% increase		
Driver Wage (\$/hr)	20	Base case	25% increase	50% increase		

References

Image credit for Slide 3:

https://www.robinradar.com/press/blog/evolution-of-the-drone-threat-part-1/ Historical references for Slide 3:

The Future of Drone Use: Opportunities and Threats from Ethical and Legal Perspectives, Asser Press – Springer, chapter by Alan McKenna, page 355

Image credit for Slide 4:

https://en.wikipedia.org/wiki/Target_drone#/media/File:Winston_Churchill_and_the_Secr etary_of_State_for_War_waiting_to_see_the_launch_of_a_de_Havilland_Queen_Bee_r adio-controlled_target_drone, 6_June 1941. H10307.jpg

Image credits for Slide 5:

https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011

Videos on Slide 6:

UPS: <u>https://www.youtube.com/watch?v=xx9_6OyjJrQ</u> Amazon: <u>https://www.youtube.com/watch?v=98Blu9dpwHU</u> Matternet/Mercedes: <u>https://www.youtube.com/watch?v=69lb3goYf7E</u> Flytrex: <u>https://www.youtube.com/watch?v=4g00KUjlbnE</u>

Image credit for Slide 14: <u>https://mttr.net</u>

Video on Slide 15: https://www.youtube.com/watch?v=dD1yyWuULCs

