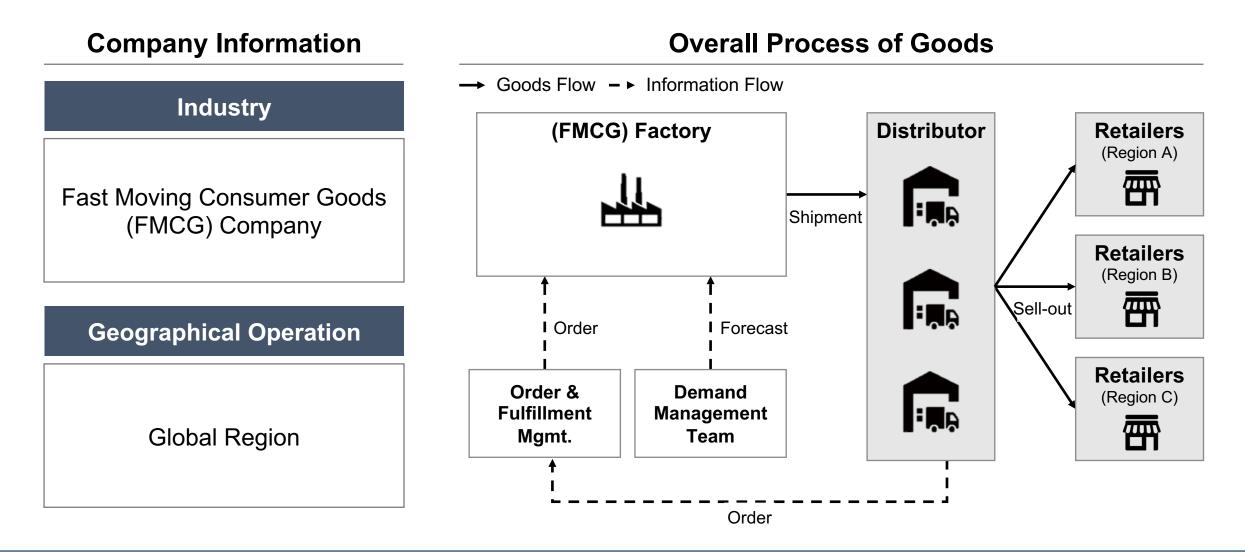
Forecasting Model for Sporadic Distributor based Markets

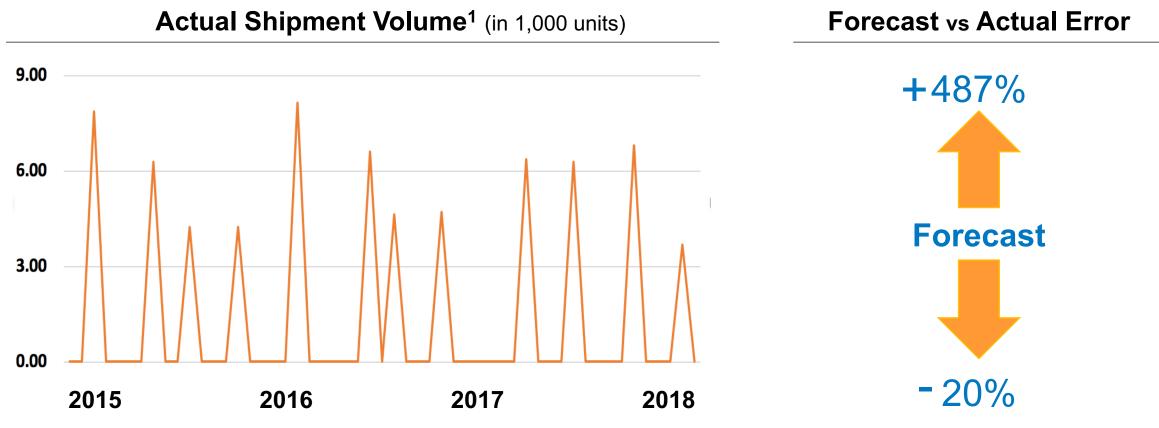
Ahmed El-azzamy Stanley Park

© 2018 MIT Center for Transportation & Logistics | Page 1


Agenda

- > Company Settings
- Motivation / Background
- > Literature Review
- > Methodology
- > Results

Conclusion

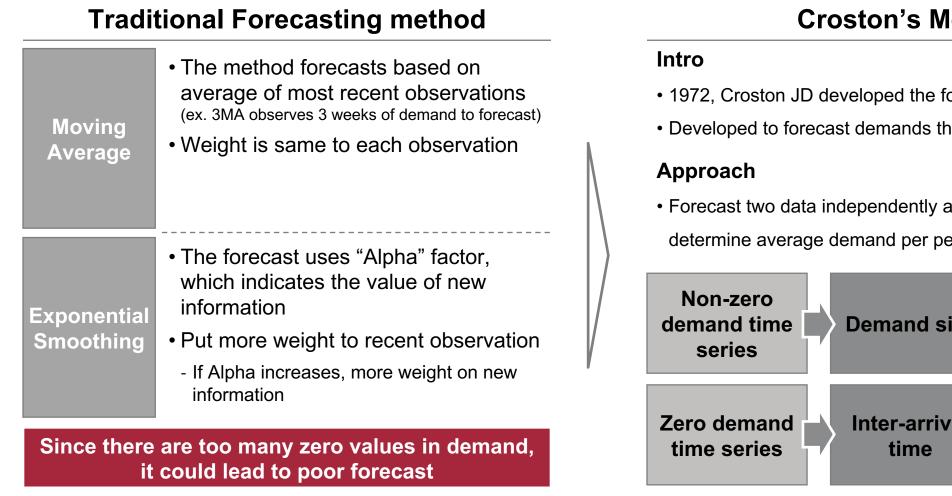


Company Settings

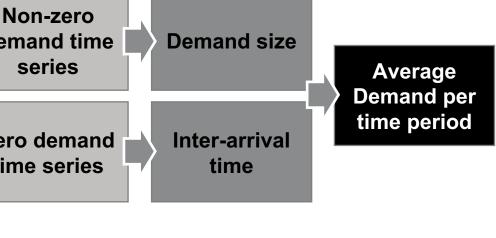
Motivation / Background

• Wide discrepancy between forecast and actual shipment impacts business (ex. missing sales, high inventory costs)

1. Sample of one SKU



- What is the best model to forecast long & short term shipments for sporadic distributor based markets?
- How can we link distributor data to improve the E2E (End to End) supply network?



Literature Review – Croston's Method

Croston's Method

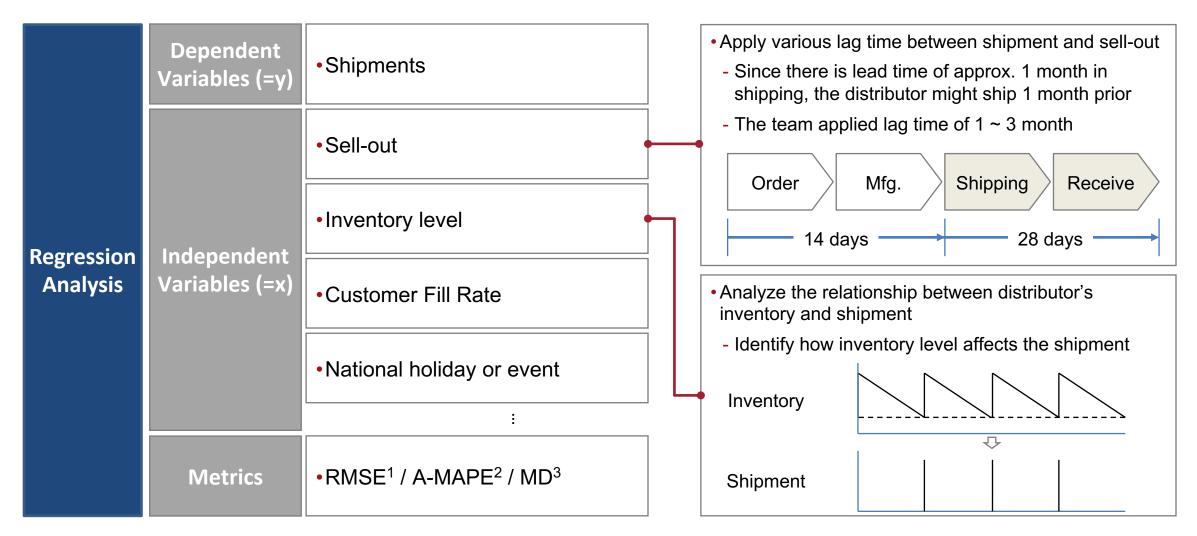
- 1972, Croston JD developed the forecasting method
- Developed to forecast demands that have multiple 0 values
- Forecast two data independently and aggregates in order to determine average demand per period

Literature Review – Multi-Tier Regression Analysis

- Demand-Driven Forecasting: A Structured Approach to Forecasting, Charles W. Chase, Jr.
- Methods of linking downstream data into forecasting model
- CPG Industry Case
- Demand & Supply Model Through Using Linear Regression
- Demand Forecast \rightarrow Supply Forecast

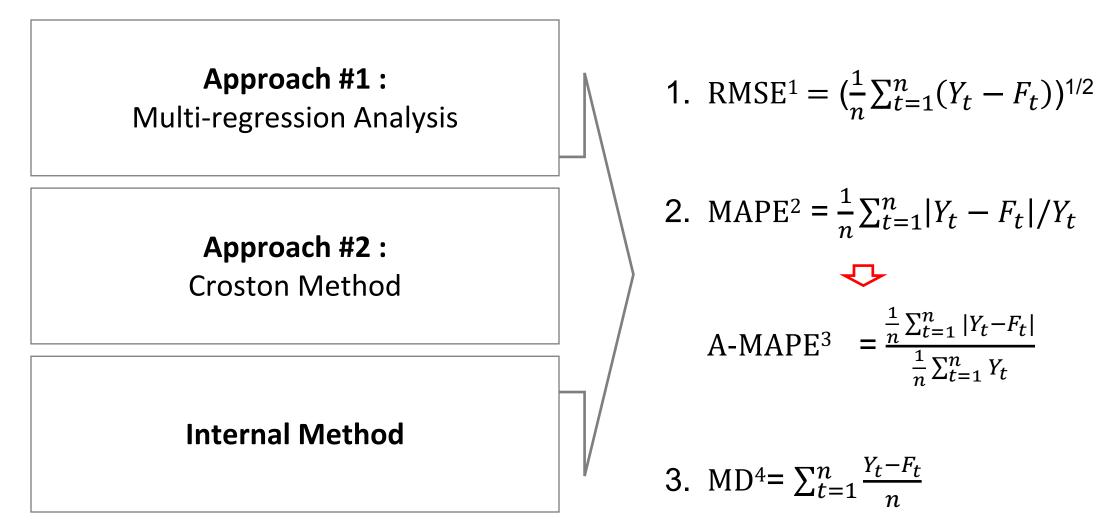
(1) Demand (D) = $\beta_{d}0 Constant + \beta_{d}1 Trend + \beta_{d}2 Seasonality + \beta_{d}3 Price + \beta_{d}4 Advertising + \beta_{d}5 Sales$ + $\beta_{d}6 \% ACV Feature + \beta_{d}7 FSI + \beta_{d}8 Store Distribution + \beta_{d}9 Competitive Price + \cdots \beta_{d}n$

(2) *Supply* (*S*)


- $= \beta_{s}0 Constant + \beta_{s}1D(lag1 n) + \beta_{s}2Trend + \beta_{s}3 Seasonality + \beta_{s}4 Gross Dealer Price$
- + $\beta_s 5 Factory Rebates$ + $\beta_s 6 Cash Discount$ + $\beta_s 7 Coop Advertising$ + $\beta_s 8 Trade Promotions$ + ... $\beta_s n$

Method – Downstream Data Acquisition

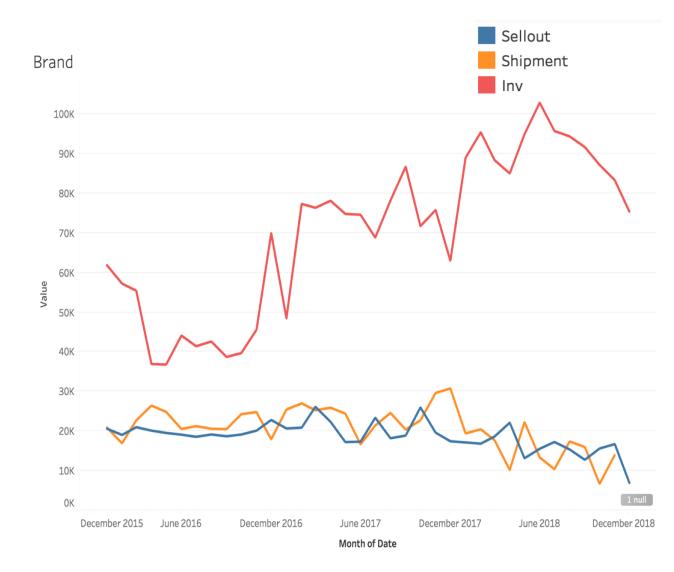
Category	Data Point	Note		
	Sell-out	Shipments from distributor to retailer		
	Inventory level	Inventory level of distributor		
Manufacturer / Distributor	Customer Fill Rate	Satisfied orders / Requested orders		
	Sales Target (or Building Block)	Sales target set by manufacturer		
	Price	Not available		
	POS data	Not available		
Retailer	Competition Prices	Not available		
	Premium Displays	Not available		
	Advertising	Not available		
General	Events	National events		


Method – Multi-Tier Regression Model

1. Root Mean Square Error 2. Mean Absolute Percentage Error 3. Adjusted Mean Absolute Percentage Error 4. Mean Deviation

Method – Metrics

1. Root Mean Square Error 2. Mean Absolute Percentage Error 3. Adjusted Mean Absolute Percentage Error 4. Mean Deviation

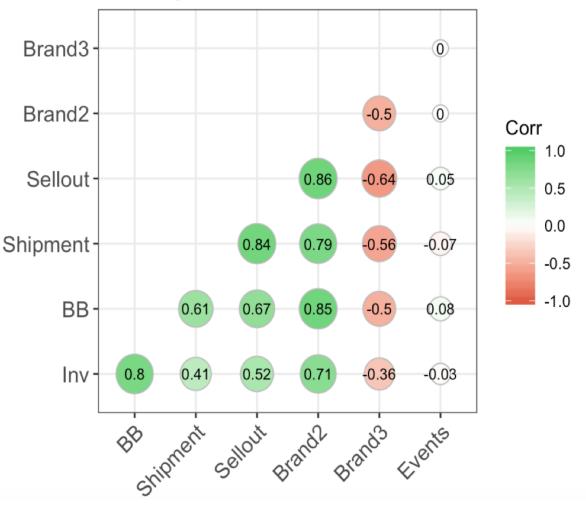

Results- Regression Analysis on Brand Level

Objective:

Understand the behavior of explanatory variables overtime

Results:

- 1. There is a lag between Sellout and shipment
- 2. Distributor Inventory increased at the end of the time horizon due to sellout decrease.


Results- Regression Analysis on Brand Level

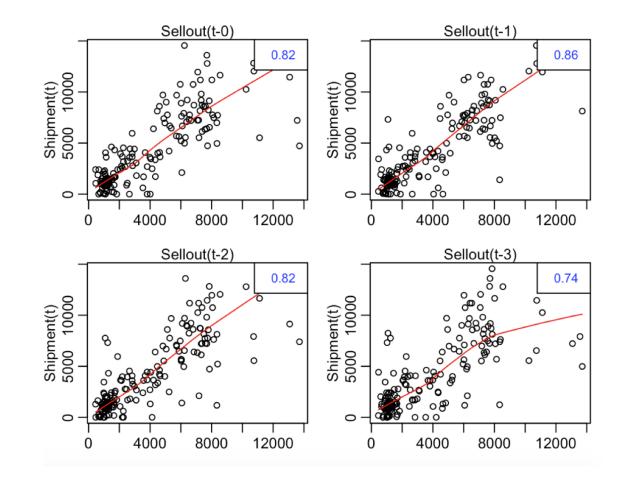
Objective:

Understand correlation between explanatory variables

Observations in the underlying dataset :

- 1. Events doesn't correlate with number of shipments
- 2. Number of shipments is highly correlated with sellout (.84) and Inventory (.41)
- 3. Building block and inventory are highly correlated which may cause multicollinearity

Correlogram of shipments and distributor data

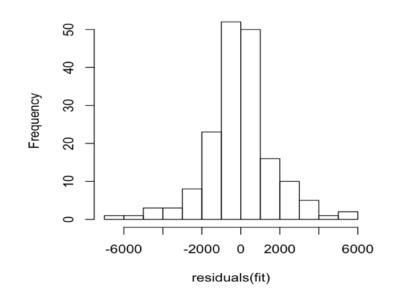

Results- Regression Analysis on Category Level

Objective:

Identify the lag between Shipment and sellout

Results:

- 1. Shipments are more correlated with sellout of t-1
- 2. There are some outliers, we flagged them as an event to see their effect on the model

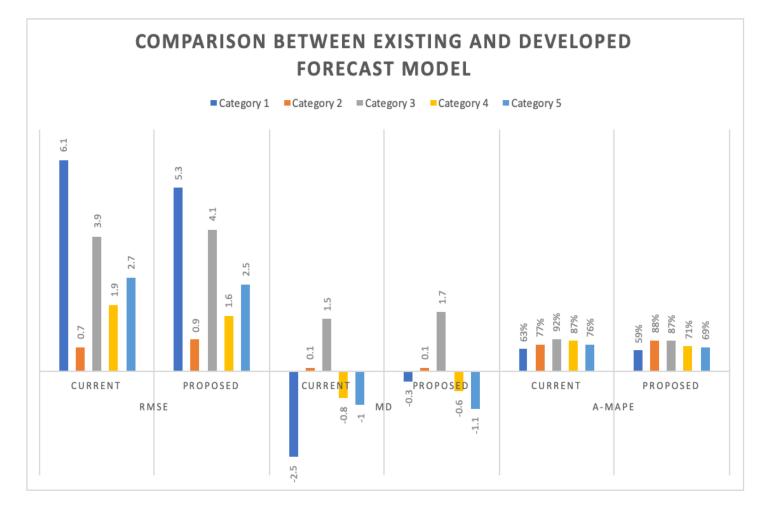


Results- Category level Model

- 1. We predicted sellout using the following equation
- 2. Model can predict up to building block availability date
- 3. We used the predicted sellout as an independent variable to predict shipments
- 4. Used a simulated inventory value as an explanatory variable
- 5. Flagged event dates, and added it as another independent variable
- 6. Predicted Sellout with an 83% R², and shipments with 78% R²

Shipment volume

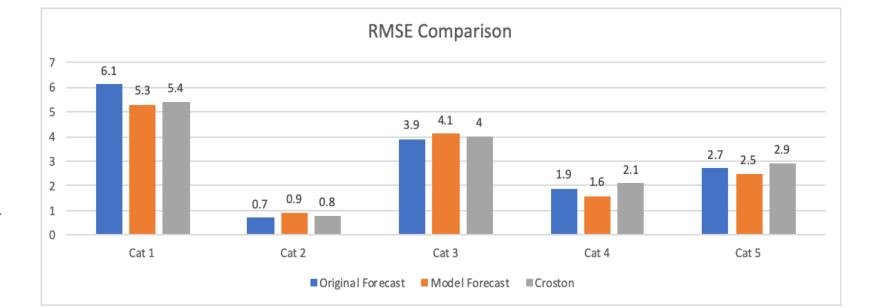
$$= 8.399e + 03 + 2.552e - 01 * (Sellout t - 1) - 6.535e - 02 * (Inventory t - 1) - 7.957e + 02 (Events) - 7.228e + 03 * (Category 2) - 1.691e + 03 * (Category 3) - 6.978e + 03 * (Category 4) - 5.023e + 03 * (Category 5)$$



Histogram of residuals(fit)

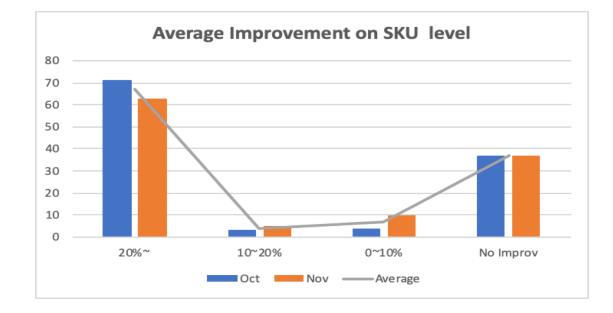
Results- Measuring Accuracy on Category Level

Category Results Summary:


- 1. Model REMSE has decreased for 3 out of 5 categories
- 2. Proposed model is less biased in some categories than original forecast
- Since the model is taking building block as main variable, it's all dependent on its accuracy.

Results- Comparing with Croston

- Ran Croston Method on category level
- Compared results over three month
- Improvement in 3 out of 5 categories

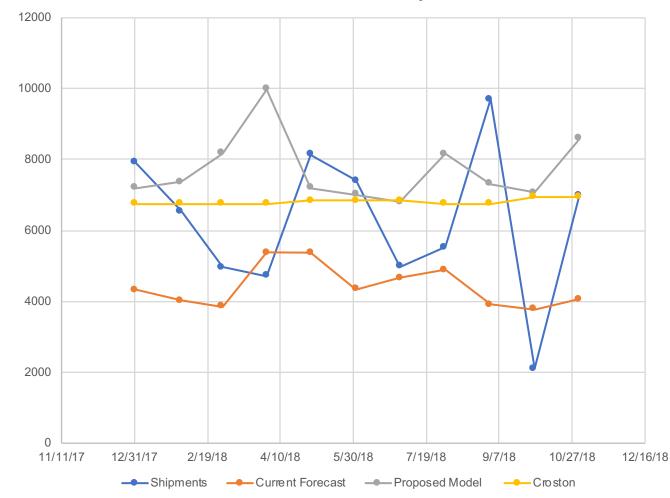


	RMSE			MD			A-MAPE		
	Original Forecast	Model Forecast	Croston	Original Forecast	Model Forecast	Croston	Original Forecast	Model Forecast	Croston
Cat 1	6.1	5.3	5.4	-2.5	-0.3	-1.3	63%	59%	54%
Cat 2	0.7	0.9	0.8	0.1	0.1	0.3	77%	88%	78%
Cat 3	3.9	4.1	4	1.5	1.7	1.9	92%	87%	89%
Cat 4	1.9	1.6	2.1	-0.8	-0.6	-1.5	87%	71%	95%
Cat 5	2.7	2.5	2.9	-1	-1.1	-1.5	76%	69%	81%

Results- Split on SKU level

- Used demand model to predict expected sellout
- Predicted shipment using supply model
- Split Category value on SKU based
 on how each SKU represents in
 total category
- On the shaped demand; on average 67 SKU improved more than 20% in terms of RMSE

	Oct	Nov	Average
20%~	51	44	48
10~20%	3	5	4
0~10%	4	10	7
-20%~0%	37	37	37
Total	95	96	96



Conclusion

- With the underlying dataset, Multiple
 regression analysis shows
- Collaboration with distributor is an imperative
 factor of the success of this method of linking
 downstream
- Croston method helps setting a smooth inventory level.

Recommendation

 For Future research; Machine learning can be utilized to cluster items, and used different forecasting methods accordingly

Forecast Methods Comparison

Thank You

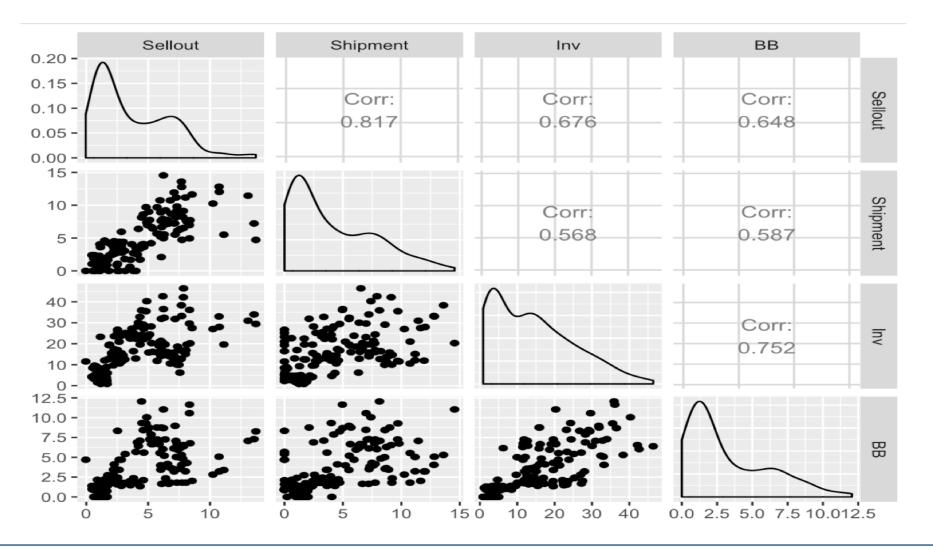
Final Results in \$\$

TC = Purchase Costs + Order Costs + Holding Costs + Stock Out Costs $TC = vD + A\left(\frac{D}{Q}\right) + \left(\frac{Q}{2} + k\sigma_L + DL\right)c_e + B_1\left(\frac{D}{Q}\right)p_{u\geq}(k)$

80 Countries

30+ Categories

Forecast error difference of


> \$80 million

* Assume 1 distributor in 1~2 countries (i.e. 40 countries for potential savings) * Assume 20 categories

Category	\$/unit	RMSE Improvement (Unit)
Category 1	\$ 20.00	800
Category 2	\$ 48.36	-200
Category 3	\$ 42.70	-200
Category 4	\$ 56.71	300
Category 5	\$ 53.20	200
RMSE difference in \$		\$25,442

Scatter plot matrix for shipment and other three numeric predictors in 1,000 unit

Results- Simulation based on target inventory

Objective:

To investigate the replenishment the products that fall below the target inventory level

Result:

Brand 2 had improved by 33% Other brands accuracy dropped significantly

	RMSE_Simulation	RMSE_Internal	Improvement
Brand1	7,094	3,311	-53%
Brand2	4,644	6,176	33%
Brand3	8,523	1,701	-80%

Model

1- Predicting distributor sellout

Coefficients:

	Estimate St	td. Error	t value	Pr(>ltl)	
(Intercept)	8291.22	533.96	15.528	< 2e-16	***
log(BB + 1)	-45.18	58.13	-0.777	0.438	
CategoryCategory2	-6818.99	314.82	-21.660	< 2e-16	***
CategoryCategory3	-1788.95	301.25	-5.938	1.59e-08	***
CategoryCategory4	-7033.47	416.75	-16.877	< 2e-16	***
CategoryCategory5	-5170.50	303.98	-17.009	< 2e-16	***
Signif. codes: 0	'***' 0.001	l'**'0.0	01 '*' 0	.05'.'0	.1''

Residual standard error: 1258 on 169 degrees of freedom Multiple R-squared: 0.8308, Adjusted R-squared: 0.8258 F-statistic: 166 on 5 and 169 DF, p-value: < 2.2e-16

2- Predicting company shipment

Coefficients:

1

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	8.399e+03	1.141e+03	7.361	7.88e-12	***
CategoryCategory2	-7.228e+03	1.047e+03	-6.906	9.95e-11	***
CategoryCategory3	-1.691e+03	5.081e+02	-3.327	0.00108	**
CategoryCategory4	-6.978e+03	1.029e+03	-6.778	2.00e-10	***
CategoryCategory5	-5.023e+03	7.546e+02	-6.657	3.85e-10	***
Sellout	2.552e-01	1.101e-01	2.319	0.02161	*
Inv	-6.535e-02	2.255e-02	-2.898	0.00427	**
Events	-7.957e+02	3.605e+02	-2.207	0.02867	*
Signif. codes: 0	'***' 0.001	'**' 0.01	'*' 0.0	5'.'0.1	''1

Residual standard error: 1792 on 167 degrees of freedom Multiple R-squared: 0.7563, Adjusted R-squared: 0.7461 F-statistic: 74.03 on 7 and 167 DF, p-value: < 2.2e-16

Forecasting Techniques

> Simulation

- Croston and it's variation
- > Multi-Tiered Causal Analysis

(1) Demand (D) = $\beta 0$ Constant + $\beta 1$ Trend + $\beta 2$ Seasonality + $\beta 3$ Price + $\beta 4$ Advertising + $\beta 5$ Sales + $\beta 6 \%$ ACV Feature + $\beta 7$ FSI + $\beta 8$ Store Distribution + $\beta 9$ Competitive Price + $\cdots \beta n$

(2) Supply (S) = $\beta 0$ Constant + $\beta 1 D(lag1 - n) + \beta 2$ Trend + $\beta 3$ Seasonality + $\beta 4$ Gross Dealer Price + $\beta 5$ Factory Rebates + $\beta 6$ Cash Discount + $\beta 7$ Coop Advertising

Model with building Block

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	8.434e+03	1.183e+03	7.131	2.93e-11	***
CategoryCategory2	-7.256e+03	1.076e+03	-6.745	2.42e-10	***
CategoryCategory3	-1.673e+03	5.310e+02	-3.151	0.00193	**
CategoryCategory4	-7.012e+03	1.073e+03	-6.534	7.52e-10	***
CategoryCategory5	-5.056e+03	8.065e+02	-6.269	3.02e-09	***
Sellout	2.532e-01	1.118e-01	2.266	0.02477	*
Inv	-6.373e-02	2.647e-02	-2.408	0.01714	*
BB	-1.148e-02	9.736e-02	-0.118	0.90632	
Events	-7.879e+02	3.676e+02	-2.143	0.03355	*
Signif. codes: 0	'***' 0.001	. '**' 0.01	'*' 0.05	5'.'0.1	''1
Posidual standard	onnon · 1708	2 on 166 day	moos of	froodom	

Residual standard error: 1798 on 166 degrees of freedom Multiple R-squared: 0.7563, Adjusted R-squared: 0.7446 F-statistic: 64.4 on 8 and 166 DF, p-value: < 2.2e-16