Impact of Freight Consolidation on Logistics Cost and Emissions

®2019 MIT Center for Transportation & Logistics - Page no. 1

Research Team

SCM Master students - 2019

Ajay Mohan

Sik (Lance) So

Dr. Josue C. Velazquez-Martinez SLI Director

Sayda Benitez Visiting Student

Research Questions

• Our research partner is a big Mexican retailer with omnichannel network

- If a customer is willing to wait, are there opportunities to consolidate shipments and improve route utilization?
- Impact of consolidation on Carbon Dioxide (CO₂) emissions and logistics costs for omnichannel home delivery?
- Are there any other upstream savings opportunities because of additional lead time that retailers can benefit from e.g. inventory pooling / warehouse transfers?

®2019 MIT Center for Transportation & Logistics - Page no. 3

BASELINE METRICS

Conclusion 1: Current vehicle utilization is low for volume and weight. Operation time is the main constraint

Conclusion 2: Volume has seasonality during Nov-Dec and 60% of volume is delivered within 2 days

DELIVERY ZONE ANALYSIS

Monterrey - High, Medium and Low volume zones (by Orders per truck)

Low

Tecamac (Mexico City) - High, Medium and Low volume zones

MIT Center for

Transportation & Logistics

Remove Low Utilization by Policy Enhancement

- Not dispatching trucks with low utilization.
 - Delay routes
 - Merge routes
 - Estimate saving 6% of truck move.
- In our example there are 94 orders carry by low utilization truck from TECAMAC in one week.

Increase time per truck with less frequent deliveries

Medium Density Orders per truck between 7 and 17

High Density Zone

By Increasing time spend on last mile

- Less truck is required to handle all delivery
- Estimate 12-26% saving

Medium Density Zone

With customer willing to wait. Rationalize the frequency of delivery - 13 to 19% saving

®2018 MIT Center for Transportation & Logistics - Chart no. 8

High Density >= 18 orders

per truck

RECOMMENDATIONS

- Operational
 - Improve low utilized routes through consolidation.
 - Reduce delivery frequency given longer lead-times.
 - Increase route length for last mile delivery
- Future Opportunities
 - Work on improving geocode data quality
 - Up-stream DC inventory analysis with longer lead-time

Saving Opportunity

Maximum: 32 % trips reduced (combining options)

Thanks!

Name email<u>@mit.edu</u>

http://sustainablelogistics.mit.edu

 $\textcircled{\sc 8}2019$ MIT Center for Transportation & Logistics - Page no. 11

Backup: Additional study on upstream inventory

- Coppel have intra DC traffic from each DC to all other DC, the top 6 DC shipping out are
 - Culiacan
 - Leon
 - Hermosillo
 - Laguna
 - Monterrey
 - Guadalajara
- We recommend holding inventory in centralize location and pull by regional DC to reduce inter DC traffic

• 15% potential saving on inter DC

Back-up Limitations

- Only 60% of record could get accurate Geocode from Google API.
- Could not run all Geocode due to Google API limitation, we only run 6 DC for 1 week, roughly 30K records.
- Currently there is no logical grouping other than City name in the data for demand analysis or automated consolidation
- The benefit is base on the weekly data we analysis

