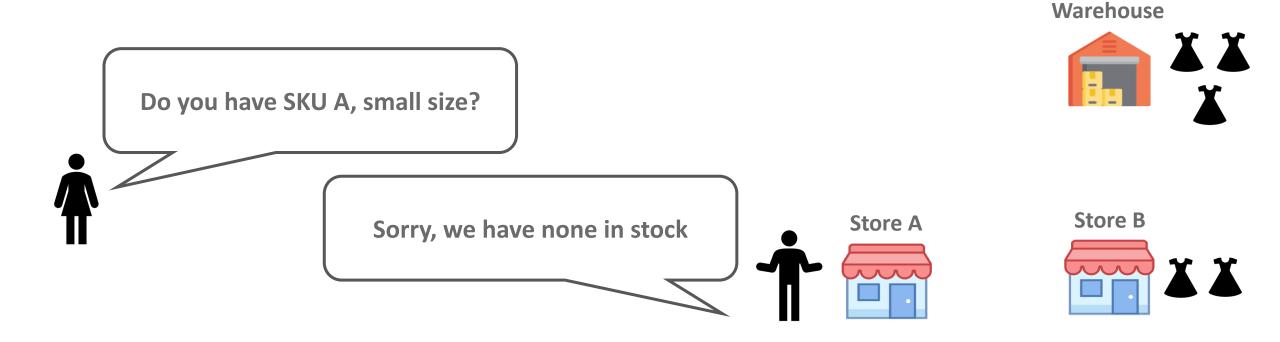
RFID & Analytics Driving Agility in Apparel Supply Chain

Anil Kumar Peter Ting

May 16, 2019 Advisor: : Dr. Maria Jesus Saenz Gil De Gomez


Traditional mass-apparel supply chain is a lengthy process from design to retail

But there is a problem...

Today's customers want products whenever and wherever they want

Consumers expect today's supply chain to be AGILE – it needs better VISIBILITY, SPEED and FLEXIBILITY

© 2019 MIT Center for Transportation & Logistics | Page 3

Sponsor's pilot to explore RFID's value

© 2019 MIT Center for Transportation & Logistics | Page 4

Research Question

In the traditional mass apparel industry, how can RFID create value by improving AGILITY through increased VISIBILITY, SPEED and FLEXIBILITY?

Hypothesis : Role of RFID driven advanced analytics

H1. Logistics & Distribution:

SKUs have different supply chain flow characteristics, RFID supported analytics help to identify right policies

H2. Retail:

Increased visibility will enable better flexibility in meeting consumer requirements both in the retail and online channels

Our Methodology

Literature Review

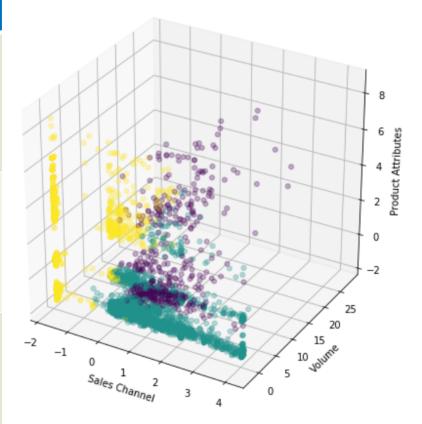
Conceptualization

Analysis (Machine learning Approach)

Results & Discussion

Initial data analysis showed SKUs with different flow characteristics

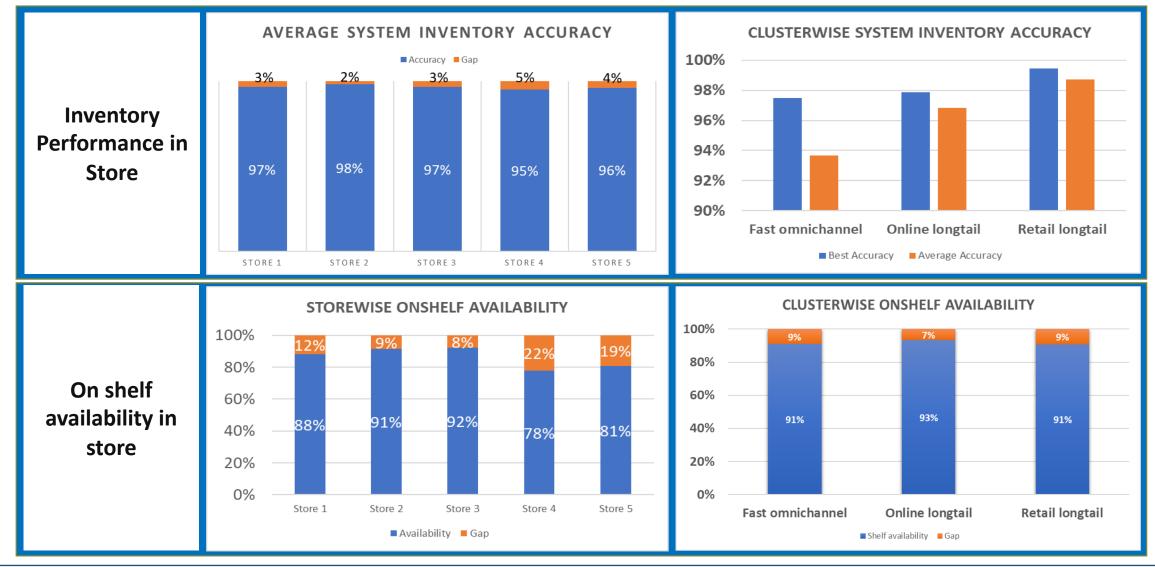
© 2019 MIT Center for Transportation & Logistics | Page 7


Extracting relevant variables for cluster analysis

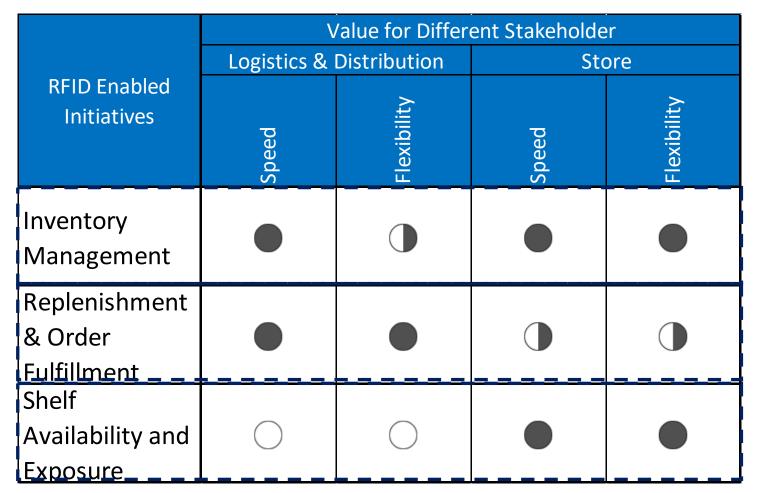
Sales Flow Density	Sales Variability	Lead Tin	ne	Product Attributes
Total_volume	Demand_variability	Average	_Sales_interval	Collection_Season
Singlesday_Sales_Volume	Sales_variability_Store	Average	_interval_online	Category
Volume_store	Sales_variability_online	Average	_interval_store	Gender
Store_Singlesday_Volume		Sales_fre	equency_total	List_price
Percent_sales_online		Sales_fre	equency_online	Collection_year
Volume_online		Sales_fre	equency_store	
Percent_Singlesday_online				
Online_Singlesday_volume				
Return_total			Final factors use	ed for cluster analysis:
Return_volume_online				
Return_volume_store			Volume	
cities_sold_online			Variability	
cities_sold_store				
stores_sold			Sales Channel	
Percentage_promo_total			Product Attribut	es
Percentage_promo_online				
Percentage_promo_store				

K-Means cluster – Identified 3 clusters with different supply chain characteristics

Cluster	Cluster Characteristics
Fast moving omnichannel	 High sales volume and low weekly sales variability Sold through multiple channels Moderate to high price range
Online Iongtail	 Low sales volume and moderate weekly sales variability Sold through online channels primarily Low price range
Retail Iongtail	 Low sales volume and high weekly sales variability Sold through offline channels primarily Low to moderate price range



Different clusters requires different execution focus to increase agility in the logistics & distribution stage


Fast moving omnichannel	Online longtail	Retail longtail
 Focus on reducing daily inventory record inaccuracy across different nodes in supply chain 	 Focus on optimizing product exposure lead time and reducing order fulfillment lead time 	 Focus on initial allocation, replenishment and rebalancing model
	<image/> <image/>	Factory Transship Replenish Replenish Retail

RFID system and enabled analytics offer multiple levers to improve store performance

RFID driven analytics offers value to all stakeholders

Key Insights:

- RFID Stock take time in store reduced from 32 to 1 man-hours
- Stock-out scenario reduced from 3% to 0.5%
- Oversold inventory reduced from 2% to 0.1%
- Potential sales gain is 1.5%

