Drone Delivery Systems Optimization Algorithm

by Rick Kuang Advised by Dr. Mohammad Moshref-Javadi

Outline

- 1. Problem
- 2. Methodology
- 3. Solution
- 4. Sensitivity Analysis
- 5. Summary of Results

1. Problem

2. Methodology

Wide variation of problems

Customer instance:

Map: Megacity Logistics Lab (MLL) map 9 Density: Urban – 3.32 km between customers Customers: 158 DC: 1

Problem parameters:

Truck: 1 Drones: 4 Truck speed: 40 km/hr Drone speed: 60 km/hr Drone range: 45 mins

Single complicated genetic algorithm

"Good enough" solution

				Vehicle			
				Trav	el	Wai	t
Step	From	То	Action	drone	truck	drone	truck
0	0	158	deliver		6.81		0.00
3	158	16	deliver	0.00		0.00	
4	16	51	pickup	6.47		0.00	
5	158	157	deliver		0.02		0.00
8	157	72	deliver	0.00		0.00	
9	72	112	pickup	8.72		0.00	
10	157	47	deliver		0.24		0.00
11	47	46	deliver		0.19		0.00
14	46	139	deliver	0.00		0.00	
15	139	96	pickup	2.85		0.00	
16	46	156	deliver		0.31		0.00
19	156	86	deliver	0.00		0.00	
20	86	95	pickup	12.32		0.00	
21	156	155	deliver		0.04		0.00
22	155	140	deliver		0.34		0.00
23	140	141	deliver		0.05		0.00

3. Solution

4. Sensitivity Analysis (1 of 2) – capacity and method

Drone availability analysis for MLL Map 3

Mode of movement analysis for MLL Map 2

Pliī

MIT Center for Transportation & Logistics

4. Sensitivity Analysis (2 of 2) – speed and range

Drone speed analysis for MLL Map 2

Drone range analysis for MLL Map 4

Plii

MIT Center for

Transportation & Logistics

5. Summary of Results

Summary of parameters tested

	T ruck capacity	Drone range	T ruck speed	Drone speed	Drone travel
Parameters	(drones)	(mins)	(km/h)	(km/h)	method
Speed	2	45	40	40/60/80	Road route
Endurance	2	30/45/60	40	60	Road route
Availability	0/2/4	45	40	60	Road route
Drone Mode	2	45	40	60	Road/Euclidean

Summary of analysis of results

Key observations:

- A truck efficiently working in conjunction with drones will typically be better than truck alone
- Being able to travel directly in Euclidean distances is a large opportunity for drones
- Faster drones are generally better; increasing returns
- More drones are generally better but quickly sees diminishing returns
- Difficult to realize savings when dense (urban) and drone launch/retrieval operations are slow