INVENTORY PLANNING IN ENGINEER-TO-ORDER (ETO) STEEL INDUSTRY

Student: Don Guo, SCMb 2019

Advisor: Nima Kazemi, PhD

Josué C. Velázquez Martínez, PhD

Agenda

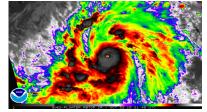
- 1. ETO INDUSTRY & CASE COMPANY SUPPLY CHAIN
- 2. MOTIVATION & RESEARCH QUESTION
- 3. DATA ANALYSIS AND METHODOLOGY
- 4. MODEL FORMULATION & MODEL VALIDATION
- 5. SENSITIVITY & SCENARIOS ANALYSIS
- 6. CONCLUSION AND FUTURE

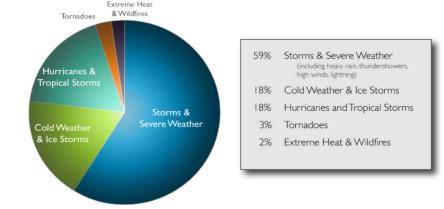
The state of the second state of the Substations

RESEARCH

ETO INDUSTRY, CASE COMPANY & ITS SUPPLY CHAIN

- ETO Characteristics:
 - Decoupling Point
 - Modification & Customizations
 - High Uncertainty Demand
 - Long Lead Time
 - Low Volume
- Focus On: Safety Stock, Lead Time, ETO Order Pattern
- Case Company:
 - Engineer-To-Order (ETO)
 - Project Tender-for-Bid Based Business
 - Uncertain Demand
 - Consume STEEL as Raw Material: Steel Coil and Plate




MOTIVATION

- Initial Motivation
 - In 2008, \$420 billion spent valued at \$2 trillion inventory.

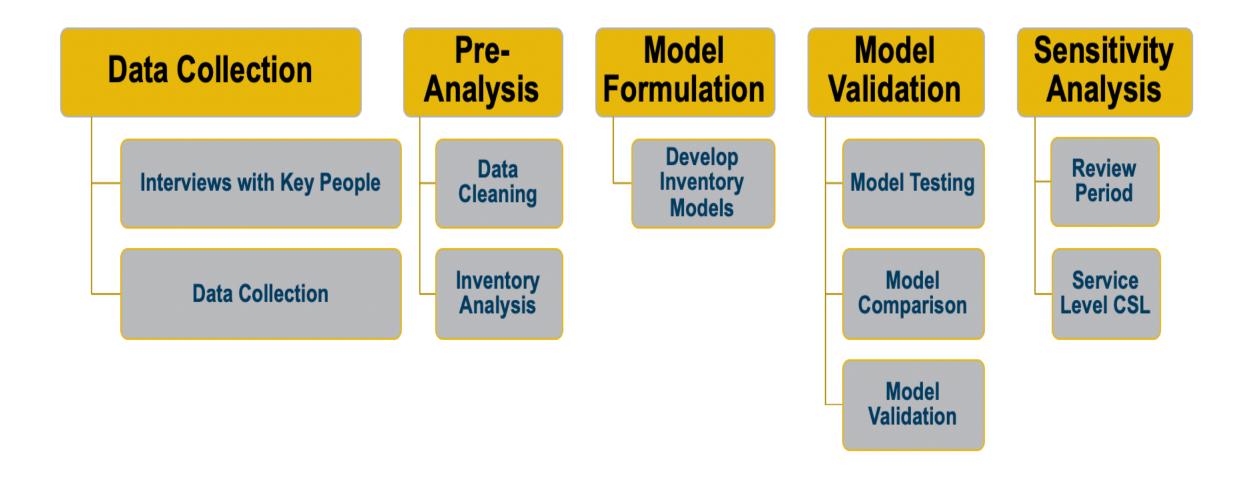
(Wilson, R. 2009. 20th Annual State of Logistics Report. Council of Supply Chain Management Professionals)

- In 2017, hurricane damage rescue.
- 6-9 months to replace the destroyed utility poles

Severe weathers, storms, hurricanes, and tornados caused nearly 90% of all weather-related power outage (Data Source: the U.S. Department of Energy's (DOE) Office of Electricity Delivery & Energy Reliability-Form OE-417 report)

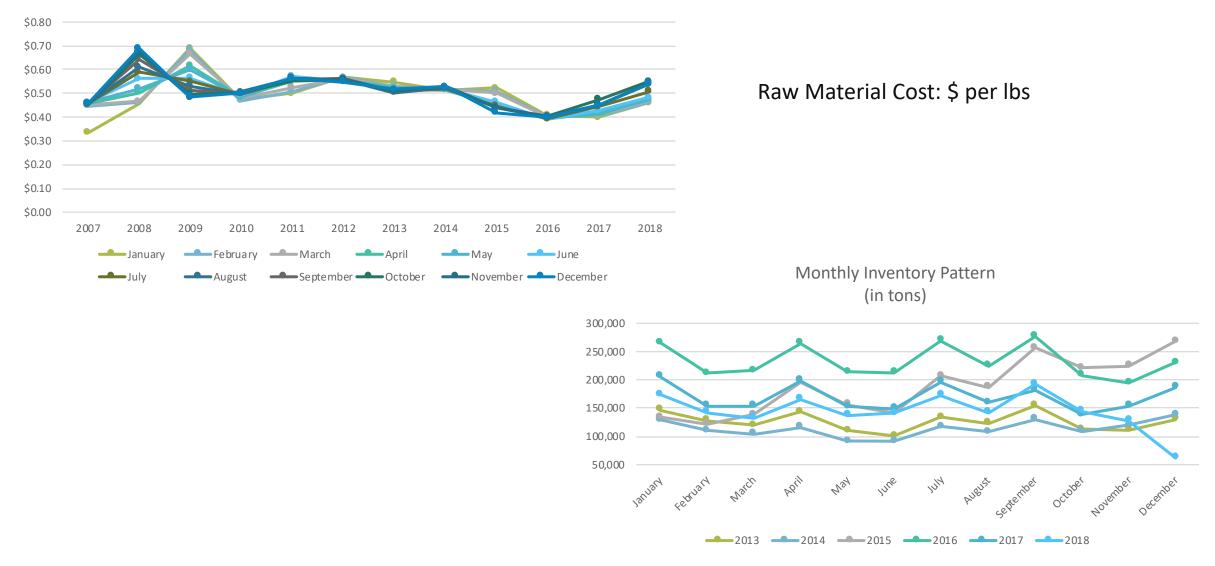
- Motivation in Scope
 - Outdated inventory policy
 - Scientific approach to replace the inventory management system

RESEARCH QUESTION


WHAT IS THE OPTIMAL INVENTORY POLICY OF THE COMPANY UNDER REGULAR BUSINESS PROCESS?

WHAT IS THE OPTIMAL REVIEW PERIOD, SAFETY STOCK LEVEL, AND ORDER QUANTITY FOR EACH SITE?

© 2019 MIT Center for Transportation & Logistics | Page 5


METHODOLOGY

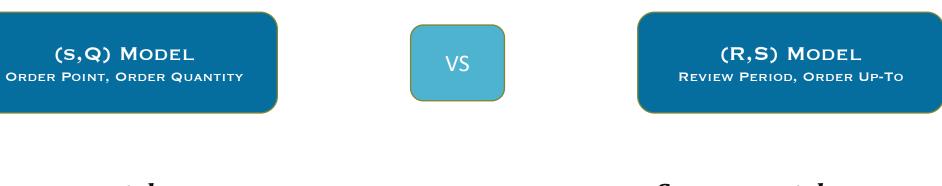
DATA ANALYSIS

Raw Material Cost Variance

MODEL ASSUMPTIONS AND NOTATION

	С	Cost of raw material (dollar per ton)		
 Model Assumptions 	i	Index for review period (review period per week)		
 Demand 	h	Inventory holding rate – annual (% of inventory cost)		
	C_s	Shortage Cost (dollar per ton)		
 variable and continuous 	C_t	Ordering cost (dollar per order)		
 Lead time 	Ce	Inventory holding cost (dollar per ton) $C_e = c * h$		
 constant and deterministic (4 weeks avg) 	S	Reorder point (weight - tonnage)		
	μ_{DL}	Mean demand over lead time (weight - tonnage)		
(4 weeks avg)	σ_{DL}	Standard deviation of demand over lead time (weight - tonnage)		
 Raw material 	CSL	Service level: 90% management decided		
 independent items 	k	$CSL = 1 - Prob [Stockout] = 1 - Prob [X > s] = Prob[X \le s]$		
		Safety stock factor		
(total tonnage of steel coil and plate)		k = norm.s.inv (1 - PX > s) or $k = norm.s.inv(CSL)$		
 Holding Cost 	g(k)	Unit short factor		
 12.5% 		$g(k) = norm.dist(k, 0, 1, 0) - k \times (1 - norm.s.dist(k, 1))$		
	S	Order up-to point (weight - tonnage)		
 Service Level 	R	Review time period - 1 week in this case		
 90% (Management Decided) 	μ_{DL+R}	Mean demand over lead time and review period (weight - tonnage)		
	σ_{DL+R} - tonnage)	Standard deviation of demand over lead time and review period (weight		
	Q	Order quantity (weight - tonnage)		

TRC Total relevant cost (dollar of total tonnage)


Table 1: Notation

MODEL FORMULATION

CONTINUOUS REVIEW INVENTORY MODEL

PERIODIC REVIEW INVENTORY MODEL

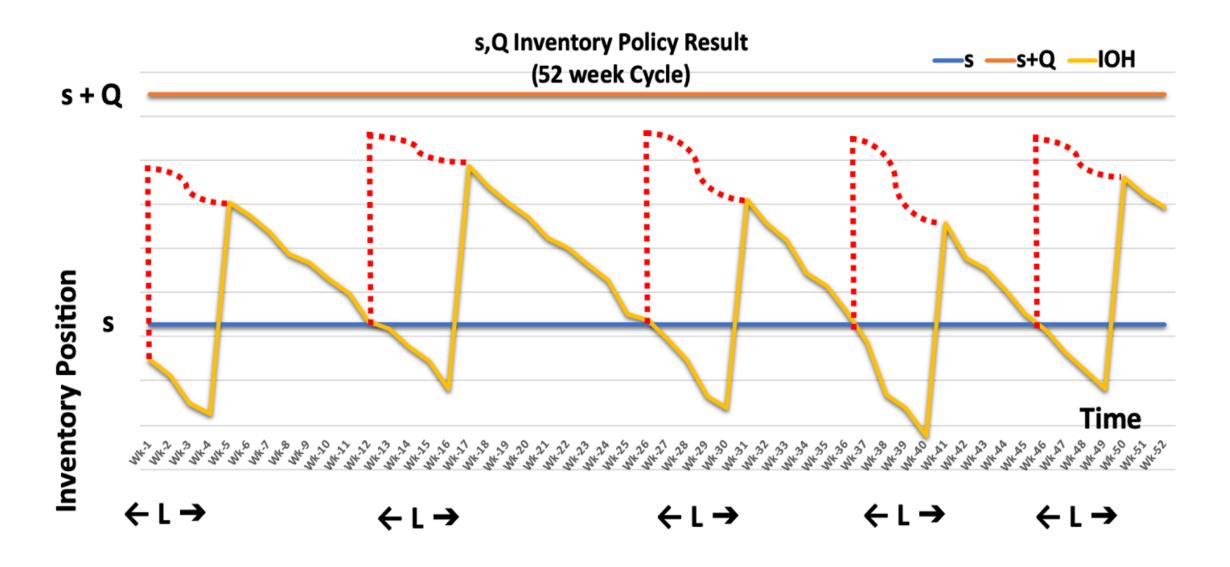
 $s = \mu_{DL} + k \times \sigma_{DL}$

 $S = \mu_{DL+R} + k \times \sigma_{DL+R}$

TOTAL RELEVANT COSTS

TOTAL RELEVANT COSTS

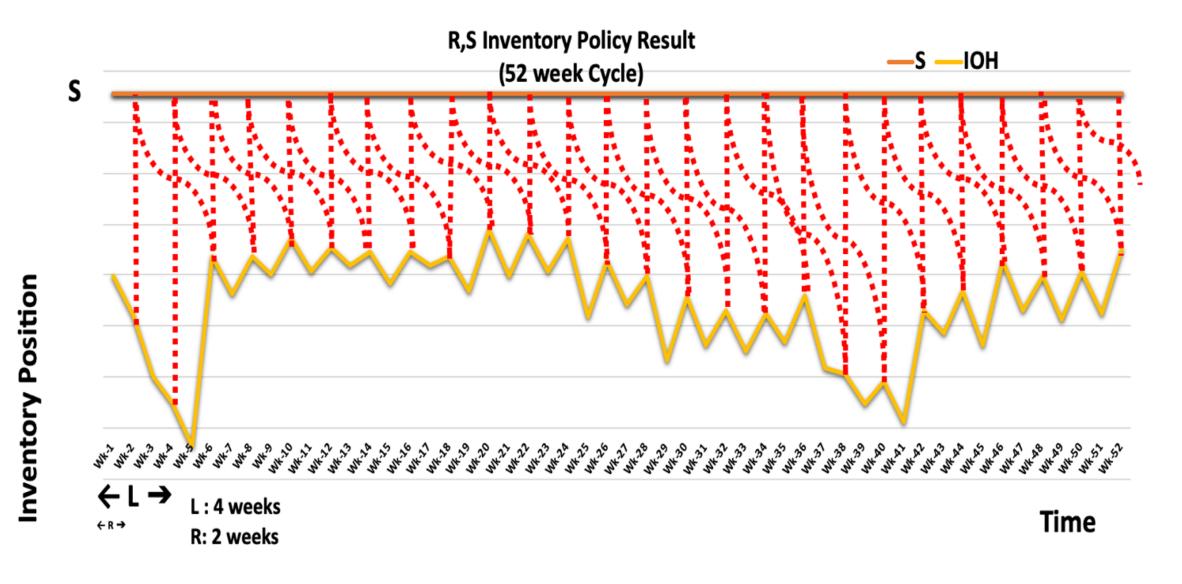
 $TRC(Q) = \sum_{i=1}^{52} (C_t * \left(\frac{D}{Q}\right) + C_e * \left(\frac{Q}{2} + k * \sigma_{DL}\right) + C_s * Prob[Stock Out])$


or $TRC(Q) = \sum_{i=1}^{52} (C_t * \left(\frac{D}{Q}\right) + C_e * \left(\frac{Q}{2} + k * \sigma_{DL}\right) + C_s * \sigma_{DL} * g(k) * \left(\frac{D}{Q}\right))$

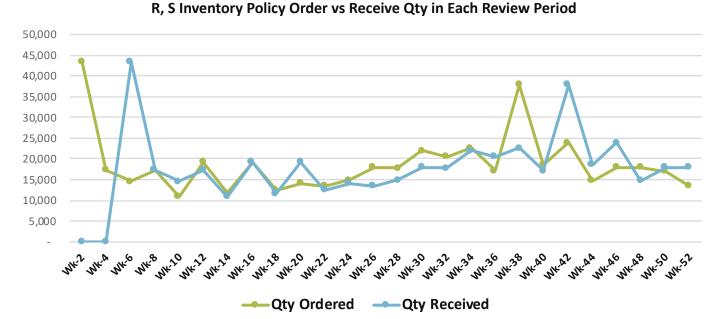
VS

$$TRC(Q) = \sum_{i=1}^{52} (C_t \left(\frac{D}{Q}\right) + C_e \left(\frac{Q}{2} + k * \sigma_{DL+R}\right) + C_s * Prob[Stock \ Out])$$

or
$$TRC(Q) = \sum_{i=1}^{52} (C_t \left(\frac{D}{Q}\right) + C_e \left(\frac{Q}{2} + k * \sigma_{DL+R}\right) + C_s * \sigma_{DL+R} * g(k) * \left(\frac{D}{Q}\right))$$



MODEL RESULT - (S,Q) POLICY



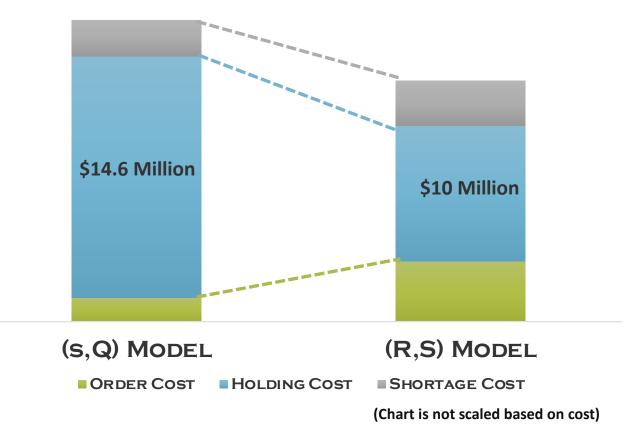
MODEL RESULT - (R,S) POLICY

MODEL RESULT - (R,S) POLICY

Week Ordered	Qty Ordered	Week Received	
Wk-2	43,362	Wk-6	
Wk-4	17,334	Wk-8	
Wk-6	14,562	Wk-10	
Wk-8	17,406	Wk-12	
Wk-10	10,890	Wk-14	
Wk-12	19,242	Wk-16	
Wk-14	11,664	Wk-18	
Wk-16	19,278	Wk-20	
Wk-18	12,582	Wk-22	
Wk-20	14,076	Wk-24	
Wk-22	13,536	Wk-26	
Wk-24	14,922	Wk-28	
Wk-26	18,000	Wk-30	
Wk-28	17,748	Wk-32	
Wk-30	22,032	Wk-34	
Wk-32	20,538	Wk-36	
Wk-34	22,644	Wk-38	
Wk-36	17,100	Wk-40	
Wk-38	37,926	Wk-42	
Wk-40	18,594	Wk-44	
Wk-42	23,850	Wk-46	
Wk-44	14,832	Wk-48	
Wk-46	17,910	Wk-50	
Wk-48	18,000	Wk-52	
Wk-50	16,974	Wk-2 Following Year	
Wk-52	13,536	Wk-4 Following Year	

© 2019 MIT Center for Transportation & Logistics | Page 12

MODEL VALIDATION


(S,Q) MODEL VS (R,S) MODEL

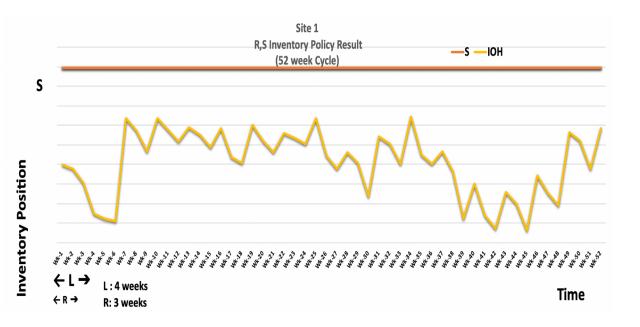
Total Relevant Cost

- (R,S) Policy is better
- \$4.6 million dollars less spend

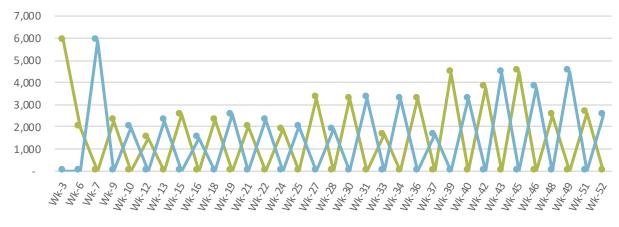
s,Q Inventory Policy						
Quantity						
s - Reorder Point	Q in ton	Safety Stock	Shortage	Ttl Order Count		
45,685	104,346	10,794	399	5		

R,S Inventory Policy					
Quantity					
S - Order upto	Q in ton	Safety Stock	Shortage	Ttl Order Count	
65,556	* below chart	13,220	488	24	

SENSITIVITY ANALYSIS


Optimal

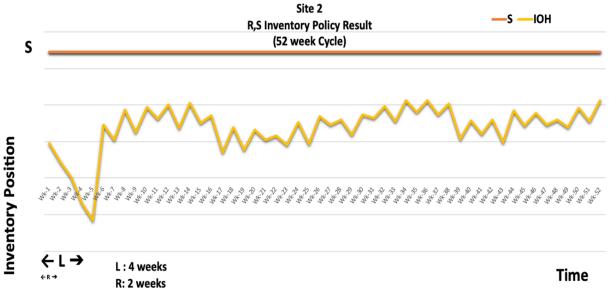
- Review Period: 2 weeks •
- CSL: 95% •


98

Site 1 Optimal

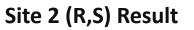
- Review Period: 3 weeks
- CSL: 93%

Site 1 R, S Inventory Policy Order vs Receive Qty in Each Review period



----Qty Order ----Qty Receive

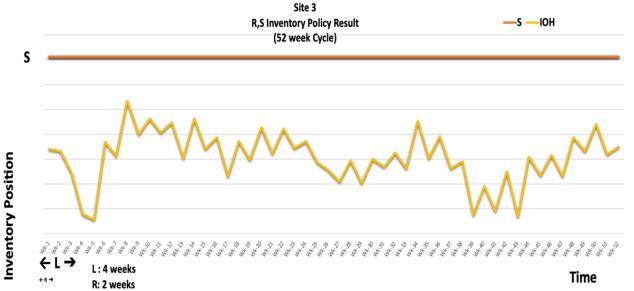
Supply Chain MANAGEMENT


Site 1 (R,S) Result

- Safety Stock Level: 2,948 tons
- No stock out

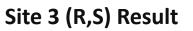
Site 2 Optimal

- Review Period: 2 weeks
- CSL: 95%



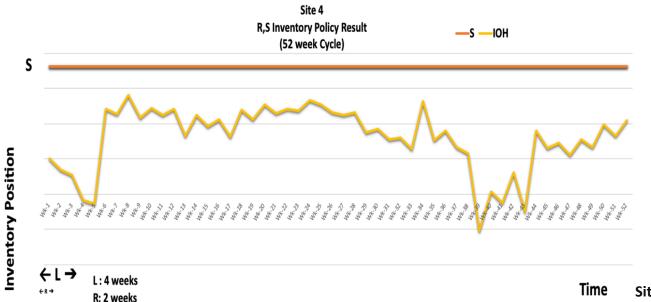
- Safety Stock Level: 1,757 tons
- Two Stock Out: week 4 and 5

Site 2 R, S Inventory Policy Order vs Receive Qty in Each Review period 7,000 6,000 5,000 4,000 3,000 2,000 1,000 nt NY: 18 Mr 30 MHISZ 14:30 NY:3A NH:32 ME ME ME ME ME ME ME ME


----Qty Ordered ----Qty Received

Site 3 Optimal

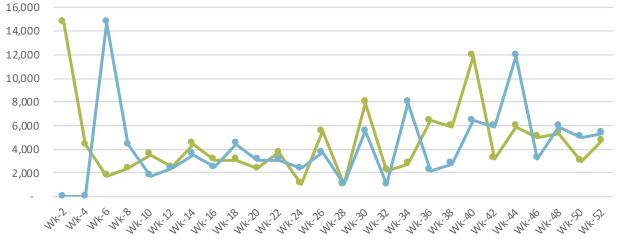
- Review Period: 2 weeks
- CSL: 95%



- Safety Stock Level: 2,020 tons
- No Stock Out

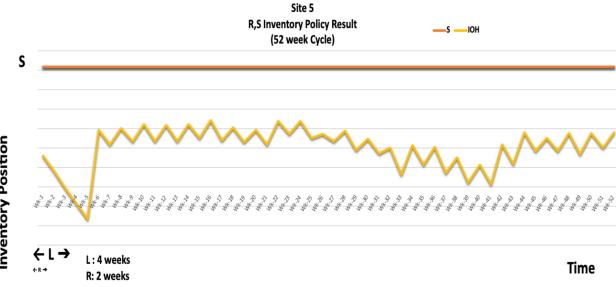
Site 3 R, S Inventory Policy Order vs Receive Qty in Each Review Period 4,500 4,000 3,500 3,000 2,500 2,000 1,500 1,000 500 MEA NY MH-2 - MEIA NK NK INK IN MX-10 MH-39 WH. QO MH-52 Mr. 12 WK-A2 MH-36 MX:3A S A A A 10 40 50 11 M M

-Qty Ordered -Qty Received


Site 4 Optimal

- Review Period: 2 weeks
- CSL: 95%

Site 4 (R,S) Result


- Safety Stock Level: 6,198 tons
- Stock Out: weeks 4, 5, 39, 41 and 43

Me Site 4 R, S Inventory Policy Order vs Receive Qty in Each Review Period

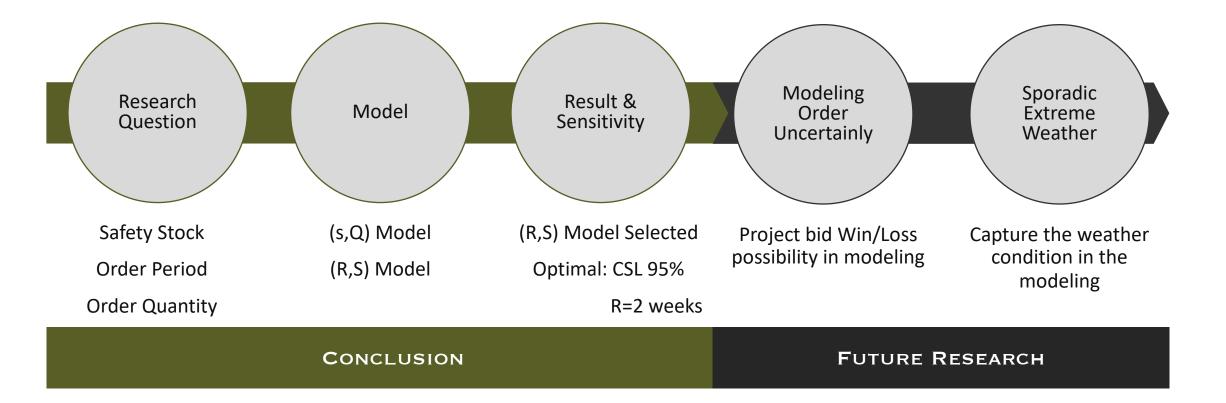
---- Qty Ordered ---- Qty Received

Site 5 Optimal

- **Review Period: 2 weeks**
- CSL: 95% •

Site 5 (R,S) Result

- Safety Stock Level: 5,190 tons •
- Stock Out: weeks 3, 4 and 5 •


Site 5 R, S Inventory Policy Order vs Receive Qty in Each Review Period

Inventory Position

CONCLUSION AND FUTURE RESEARCH

© 2019 MIT Center for Transportation & Logistics | Page 21

© 2019 MIT Center for Transportation & Logistics | Page 22