Integrating Collection-and-Delivery Points in the Strategic Design of Last-Mile E-Commerce Distribution Networks

By: Himanshu Rautela

Advisor: Dr. Milena Janjevic

June 6, 2019

Growth in e-Commerce creates challenges for last-mile delivery

- Increasing adoption of internet and smartphones
- Global e-commerce volumes are growing rapidly
- Consumers want the convenience to pick up or return products at physical locations
- Retailers strive to minimize delivery times and reduce transportation costs

Collection-and-delivery points (CDPs) offer a solution for both retailers and consumers

- Flexible pickup schedule for customers
- Aggregation of customer demand
 - For customer delivery
 - For returned products
- Lower delivery cost for carriers

Image Credits: https://www.amazon.com/primeinsider/tips/amazon-locker-qa.html http://cad-ltd.co.uk/portfolio/asda-click-and-collect/

Optimal network design considers multi-echelon distribution with CDPs

- CDPs aggregate demand and enable reductions in travel time
- CDPs reduce multiple redelivery attempts due to lesser failed deliveries
- CDPs aggregate demand for return flow and multiple failed pickups for returned products
- The presence of CDPs changes the demand density in the region

Location routing problems combine location and routing optimization

- Two-tier network design with different vehicles in each tier
- Line-haul transportation from Hubs to Satellite Facilities
- Smaller vehicles to transport goods in the last mile
- Option of Dedicated CDP routes, Customer-only routes, and Blended routes

$$\min_{y_j, w_i, x_{ij}} K(\mathbf{y}, \mathbf{w}, \mathbf{x}) = K^F(\mathbf{y}) + K^P(\mathbf{w}) + K^T(\mathbf{x}, \mathbf{w}) + K^R(\mathbf{x}, \mathbf{w})$$
(1)

where

$$K^{F}(\mathbf{y}) = \sum_{j \in J} y_{j}c_{j}^{F,f} + \sum_{j \in J} c_{j}^{F,v} \sum_{i \in I} x_{ij} \left(\left(\gamma_{i}^{F}(\mathbf{w}) + \gamma_{i}^{R}(\mathbf{w}) \right) A_{i}\rho_{i} + \sum_{k \in I} \psi_{ik}^{F}(\mathbf{w}) + \sum_{k \in I} \psi_{ik}^{R}(\mathbf{w}) \right), \quad (2)$$

$$K^{P}(\mathbf{w}) = \sum_{i \in D} c_{i}^{P,f} w_{i} + \sum_{i \in D} c_{i}^{P,v} \left(\sum_{k \in I} \psi_{ik}^{F}(\mathbf{w}) + \sum_{k \in I} \psi_{ik}^{R}(\mathbf{w}) + \left(\gamma_{i}^{F}(\mathbf{w}) \lambda^{F} \beta w_{i} \right) \rho_{i} A_{i} \right), \quad (3)$$

$$K^{T}(\mathbf{x}, \mathbf{w}) = 2 \frac{\kappa^{\alpha}}{\xi^{\alpha}} \sum_{j \in J} \frac{d_{j} c_{j}^{\alpha, hr}}{s^{\beta, l}} \sum_{i \in I} x_{ij} \left(\left(\gamma_{i}^{F}(\mathbf{w}) + \gamma_{i}^{R}(\mathbf{w}) \right) A_{i} \rho_{i} \theta_{i}^{C} + \theta_{i}^{P}(\mathbf{w}) \left(\sum_{k \in I} \psi_{ik}^{F}(\mathbf{w}) + \sum_{k \in I} \psi_{ik}^{R}(\mathbf{w}) \right) \right),$$

$$\tag{4}$$

$$K^{R}(\mathbf{x}, \mathbf{w}) = \sum_{j \in J} \sum_{i \in I} x_{ij} f_{ij}(\mathbf{w}),$$
(5)

$$\psi_{ik}^{F}(\mathbf{w}) = \gamma_{k}^{0,F} A_{k} \rho_{k} \max[\tau^{F} - \eta^{F} r_{ki}, 0], \qquad \forall i \in D, k \in I, \qquad (6)$$

$$\psi_{ik}^{R}(\mathbf{w}) = \gamma_{k}^{0,R} A_{k} \rho_{k} \max[\tau^{R} - \eta^{R} r_{ki}, 0], \qquad \forall i \in D, k \in I, \qquad (7)$$

$$\gamma_{k}^{F}(\mathbf{w}) = \left(\gamma_{k}^{0,F} - \sum_{k} \frac{\psi_{ik}^{F}(\mathbf{w})}{2}\right) \left(1 + \lambda^{F} (1 - \beta . w_{k})\right), \qquad \forall k \in I, \qquad (8)$$

$$\gamma_{k}^{R}(\mathbf{w}) = (\gamma_{k}^{0} - \sum_{i \in D} \frac{\rho_{k} A_{k}}{\rho_{k} A_{k}})(1 + \lambda^{-}(1 - \beta .. w_{k})), \qquad \forall k \in I, \qquad (8)$$

$$\gamma_{k}^{R}(\mathbf{w}) = (\gamma_{k}^{0,R} - \sum_{i \in D} \frac{\psi_{ik}^{R}(\mathbf{w})}{\rho_{k} A_{k}})(1 + \lambda^{R}), \qquad \forall k \in I, \qquad (9)$$

$$\gamma_{k}^{0,R} = \delta .\gamma_{k}^{0,D}, \qquad \forall k \in I, \qquad (10)$$

$$\begin{split} \gamma_k^{0,R} &= \delta. \gamma_k^{0,D}, & \forall k \in I, \\ \theta_i^D(\mathbf{w}) &= \frac{\sum\limits_{k \in I} \psi_{ik}^F(\mathbf{w}) \theta_k^C}{\sum\limits_{k \in I} \psi_{ik}^F(\mathbf{w})}, & \forall i \in D, \end{split}$$

subject to

$$\sum_{i \in I} x_{ij} \left(\left(\gamma_i^F(\mathbf{w}) + \gamma_i^R(\mathbf{w}) \right) \rho_i A_i + \sum_{k \in I} \psi_{ik}^F(\mathbf{w}) + \sum_{k \in I} \psi_{ik}^R(\mathbf{w}) \right) \le Z_j y_j, \qquad \forall j \in J, \qquad (13)$$
$$y_j \in \{0, 1\}, \qquad \forall j \in J, \qquad (14)$$
$$x_{ij} \in \{0, 1\}, \qquad \forall i \in I, j \in J, \qquad (15)$$
$$w_i \in \{0, 1\}, \qquad \forall i \in D. \qquad (16)$$

$$f_{ij}(\mathbf{w}) = \begin{cases} f_{ij}^D(\mathbf{w}) + f_{ij}^B(\mathbf{w}) + f_{ij}^C(\mathbf{w}), & \text{for } i \in D, \\ f_{ij}^C(\mathbf{w}), & \text{otherwise,} \end{cases} \quad \forall i \in I, j \in J, \qquad (17)$$
$$f_{ij}^B(\mathbf{w}) = f_{ij}^{B^P}(\mathbf{w}) + f_{ij}^{B^T}(\mathbf{w}), \quad \forall i \in D, j \in J. \qquad (18)$$

$$f_{ij}^{D}(\mathbf{w}) = wc_{ij}^{D}(\mathbf{w}) \left(\mu_{ij}^{D,F}(\mathbf{w}) \left(t^{L,v} + t^{P,v} \right) + \frac{2r_{ij}\kappa^{\beta,l}}{s^{\beta,l}} + \mu_{ij}^{D,R}(\mathbf{w}) \left(t^{P,v} + t^{L,v} \right) \right), \quad \forall i \in D, j \in J, \quad (19)$$

where

$$\mu_{ij}^{D,F}(\mathbf{w}) = \frac{\xi^{\beta}}{\theta_i^D(\mathbf{w})}, \qquad \forall i \in D,, \qquad (20)$$

$$c_{ij}^{D}(\mathbf{w}) = \left[\frac{\sum\limits_{k\in D} \psi_{ik}^{D,F}(\mathbf{w})}{\mu_{ij}^{D,F}(\mathbf{w})}\right], \qquad \forall i \in D, j \in J, \qquad (21)$$

$$\mu_{ij}^{D,R}(\mathbf{w}) = min \left[\frac{\sum\limits_{k \in D} \psi_{ik}(\mathbf{w})}{c_{ij}^{D}(\mathbf{w})}, \mu_{ij}^{D,F}(\mathbf{w}) \right], \qquad \forall i \in D, j \in J.$$
(22)

$$\mu_{ij}^{B,F}(\mathbf{w}) = \sum_{k \in I} \psi_{ik}^{D,F}(\mathbf{w}) - c_{ij}^{D}(\mathbf{w}) \mu_{ij}^{D,F}(\mathbf{w}), \qquad \forall i \in D, j \in J,$$
(23)

$$\mu_{ij}^{B,R}(\mathbf{w}) = \sum_{k \in I} \psi_{ik}^{D,R}(\mathbf{w}) - c_{ij}^{D}(\mathbf{w})\mu_{ij}^{D,R}(\mathbf{w}), \qquad \forall i \in D, j \in J,$$
(24)

$$f_{ij}^{B^{P}}(\mathbf{w}) = w \left(\mu_{ij}^{B,F}(\mathbf{w}) \left(t^{L,v} + t^{P,v} \right) + \mu_{ij}^{B,R}(\mathbf{w}) \left(t^{P,v} + t^{L,v} \right) \right), \qquad \forall i \in D, j \in J.$$
(25)

$$\begin{split} f_{ij}^{X}(\mathbf{w}) = & w c_{ij}^{X}(\mathbf{w}) \left(\frac{2r_{ij}}{s^{\beta,l}} + n_{ij}^{X}(\mathbf{w})t^{C,f} + \left(n_{ij}^{X}(\mathbf{w}) + \pi^{X}(\mathbf{w}) \right) \frac{\kappa^{\beta,l}\kappa_{i}^{\beta,s}}{s_{i}^{\beta,s}\sqrt{\frac{\left(\gamma_{i}^{F}(\mathbf{w}) + \gamma_{i}^{R}(\mathbf{w})\right)A_{i} + \pi^{X}(\mathbf{w})}{A_{i}}} \\ & + \frac{n_{ij}^{X}(\mathbf{w})}{1 + \delta} (\lambda^{F}\beta w_{i})t^{P,v} \right), \qquad \qquad \forall i \in S^{X}, j \in J \quad (26) \end{split}$$

where

(11)

$$\begin{aligned} \zeta_{ij}^{X}(\mathbf{w}) &= \frac{\xi_{ij}^{\beta,X}(\mathbf{w})}{\theta_{i}^{C}\rho_{i}}, \\ T_{ij}^{X,f} &= \frac{2r_{ij}}{s^{\beta,l}}, \end{aligned} \qquad \forall i \in S^{X}, \qquad (27) \\ \forall i \in S^{X}, j \in J, \quad (28) \end{aligned}$$

$$\forall i \in S^X, j \in J, \quad (28)$$

$$T_i^{X,v} = t^{C,f} + \frac{\kappa_i \kappa^o}{s_i^{\beta,s} \sqrt{\frac{\left(\gamma_i^F(\mathbf{w}) + \gamma_i^R(\mathbf{w})\right) A_i + \pi^X(\mathbf{w})}{A_i}}} + \frac{(\lambda^r \beta w_i) t^{r,s}}{1+\delta}, \qquad \forall i \in S^X, \tag{29}$$

Methodology applied on the network design of a leading e-commerce retailer in Brazil

- Sao Paulo metropolitan region
- ~15,000 daily customer deliveries
- Area of ~2,400 square km
- 1 distribution hub
- 5 candidate Satellite Facilities
- 85 CDP sites

Optimal network (SF) configuration is the same with and without CDPs

CDPs result in significant cost savings in last-mile distribution

	Without CDP		With CDP			
Parameters*	Last-mile distribution cost	Total Cost	Last-mile distribution cost	Total Cost	Last-mile cost savings	Total cost savings
Forward flow only						
[100-0-0-10-0]	Without Last-mile distribution cost 82.6 85.6 88.8 88.8 s82.6 92.0 ries + Failed 85.7	100.0	76.2	98.9	7.7%	1.1%
[100-0-0-20-0]			71.0	94.5	14.0%	5.5%
Forward flow with failed deliveries						
[100-0-5-0-20-40]	85.6	103.3	72.6	96.4	15.2%	6.7%
[100-0-5-0-20-80]			71.6	95.4	16.4%	7.6%
[100-0-10-0-20-40]	88.8	106.7	74.2	98.1	16.4%	8.1%
[100-0-10-0-20-80]			72.1	95.9	18.8%	10.1%
Forward flow + Return flow. No Failed deliveries						
[85-15-0-0-20-0]	82.6	100.0	71.0	94.5	14.0%	5.5%
[100-15-0-0-20-0]	92.0	110.1	79.1	103.4	14.0%	6.1%
Forward flow + Return flow + Failed deliveries + Failed Pickups						
[85-15-5-20-40]	85.7	103.3	72.8	96.4	15.1%	6.6%
[85-15-5-10-20-40]	86.2	103.7	73.1	96.7	15.2%	6.7%
[85-15-10-10-20-40]	88.9	106.6	74.5	98.4	16.2%	7.7%
[85-15-10-20-20-40]	89.7	107.5	75.1	99.0	16.3%	7.9%

*Parameters: [Forward Demand – Return Demand – % Failed Deliveries – % Failed Pickups – Demand Attracted by CDP – % Customers choosing a CDP as an alternate location for failed deliveries]

Integrating CDPs in the strategic design of e-commerce distribution networks helps design efficient supply chains

- CDPs offer convenience to consumers and provide competitive advantage to retailers
- Last-mile is the most expensive leg of delivery
- CDPs save last-mile distribution costs by:
 - Aggregating forward and return demand and reducing transit time for carriers
 - Offering an alternative delivery location for failed deliveries and failed return pick-ups

https://www.accenture-insights.nl/en-us/articles/last-mile-delivery-a-challenge-you-can-embrace

