

Student: Name Brian O'Donnell, SCM 2019 Student: Kristin Pedersen, SCM 2019 Advisor: Tim Russell Sponsor: The Carlstar Group

Background

The Carlstar Group

Leader in specialty tire and wheels industry

Dramatic changes in tariffs

Volatility expected to continue

Global MFG heavily impacted

Rising transportation costs Product demand fluctuations

Key Question

Do changes across demand, tariffs, and transportation costs alter decisions on product flow and mode selection?

Relevant Literature

Chandra, Charu, and Jānis Grabis. "Mathematical **Programming Approaches.**" In Supply Chain Configuration: **Concepts, Solutions, and Application**

Riopel, D., Langevin, A., & Campbell, J. (2005). Logistics Systems Design and Optimization

Transportation Cost & Tariff Optimization

Problem

Dynamically identify optimal product flow and delivery mode that incorporates changes in demand, tariffs, and transportation costs to minimize total cost.

Methodology

Build a Mixed Integer Linear Programming model to determine optimal product flow and mode selection for all seven market segments that minimizes total cost.

January 2019 Poster Session

Initial Results

Determined optimal modeling technique to identify the most cost effective product flows

final end-customer destination

Expected Contribution

Provide a model that informs and enables more dynamic decision making regarding product flow and mode selection for cost minimization

Brian O'Donne

