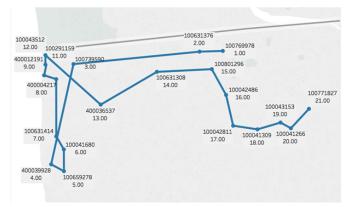
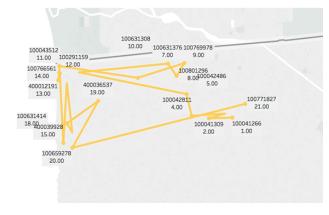
Learning from Route Plan Deviations from Last-Mile Delivery

Author: William Phillips & Yiyao Li Advisor: Dr. Matthias Winkenbach Sponsor: CTL

Massachusetts Institute of Technology

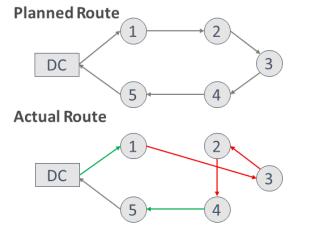

AGENDA


INTRODUCTION	What route plan deviation is and why it matters	
DATA	Ask the driver through data	
METHODOLOGY	Getting the tools ready	
RESULTS	Here are the model	
CONCLUSIONS	So what	
Q&A	Love to hear questions	

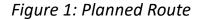
INTRODUCTION

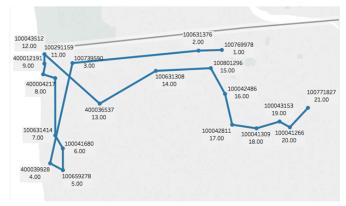
- > 1 mile of reduction in average route distance results in \$50M of annual cost savings for UPS in US only
- > Urbanization and new costumers demands are making last-mile delivery optimization increasingly complex and relevant to retail companies
- > Lacking tools and/or capabilities to include costumer specific or environmental constrains such us:
 - Time windows (implicit or explicit)
 - Congestion patterns
- > Even for companies wiling to make **capital investment**, if the driver failed to follow the plan it forfeits the investment
- > Drivers stated preference is studied but not **revealed preference**, so this project is actually asking the driver through data

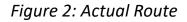
Figure 1: Planned Route

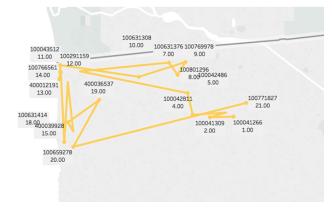


DATA

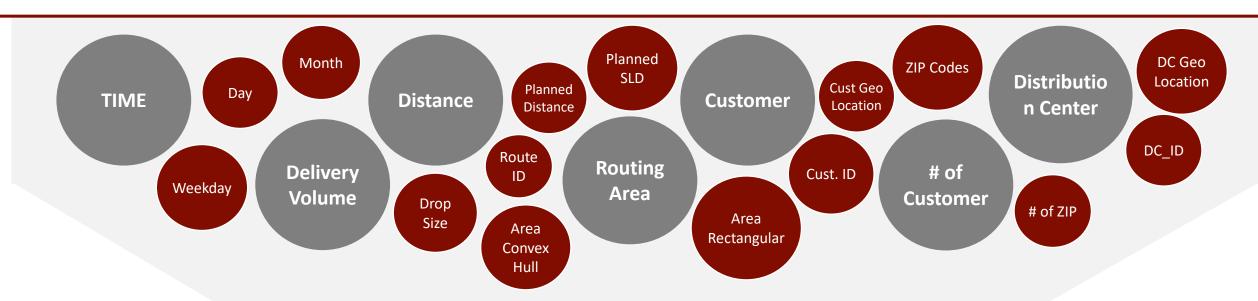

- > Data Description:
 - Information about the route instances
 - Information about the stops
- > Measuring deviation:
 - Deviation
 - Sequence Deviation = Arcs not followed by driver / Total Arcs
 - Distance Deviation = Actual Distance / Planned Distance 1
 - SLD Deviation = Actual Sequence SLD* / Planned Sequence SLD 1

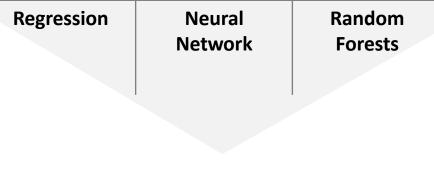

* SLD: Straight Line Distance




Example:

- Deviation = 1
- Sequence Deviation = 3/5
- Distance Deviation = 15/11-1 = 36.4%
- SLD Deviation = 7/6 1 = 16.7%





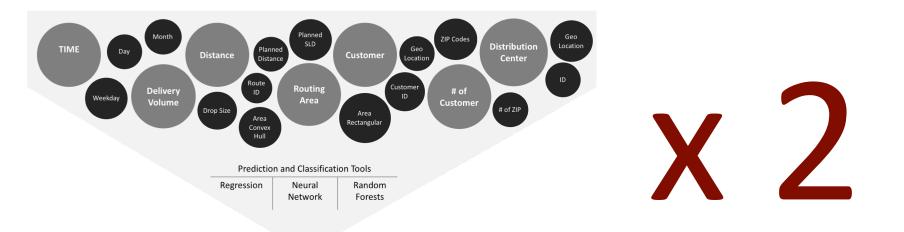
METHODOLOGY

Prediction and Classification Tools

Deviation & SLD Deviation

Prediction and Classification Tools – Performance Metrics

Regression	Neural Network & Random Forests	
> Continuous Variable Adjusted R ²	> Both Variables	Generalized R ²
> Binary Variable Generalized R ²	 > Binary Variable — Specificity — Sensitivity — Accuracy 	Confusion Matrix

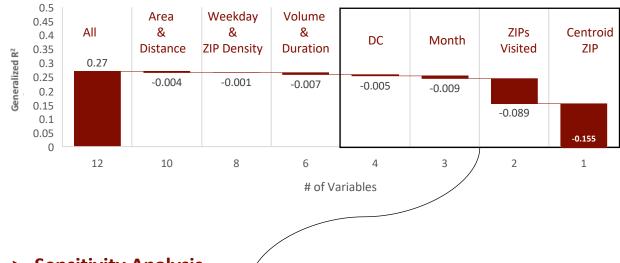

> Fixed 70% Validation Set and 30% Training Set

METHODOLOGY

	Mexico	US	All
Route Instances	7,644	47,881	55,525
Number of DCs	9	9	18
Stops per Route	17.9	12.8	13.5
Route Distance (km)	73.0	106.9	102.2
Deviation	45.8%	79.8 %	75.1%
Sequence Deviation*	61.8%	54.7%	55.3%
SLD Deviation*	12.1%	1.7%	2.6%

* Only considering deviated routes

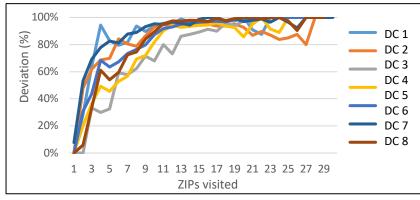
- > US valid data size is 6X the Mexico data size
- > US deviated routes deviate more
- > US routes' deviation impact on SLD is lower
- > Significant difference in deviation between countries

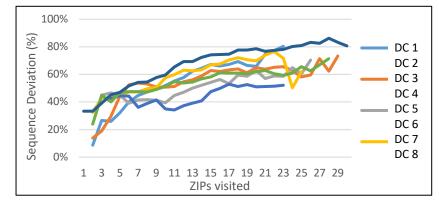


Deviation & SLD Deviation

Results – Deviation by Regression Analysis

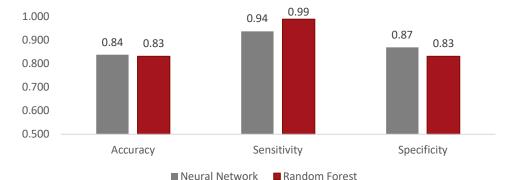
> Iterative Process of selecting significant variables


> Performance measured by Generalized R²


> Sensitivity Analysis

	V	
	Gen. R ²	Difference
ZIPs visited	0.167	0.091
Centroid ZIP	0.188	0.070
Month	0.244	0.014
DC_ID	0.253	0.005
All included	0.258	0.000

Sequence Deviation vs ZIPs visited, by DC



Results – Deviation by Classification Methods

> Significantly Higher Generalized R² than logistic Regression

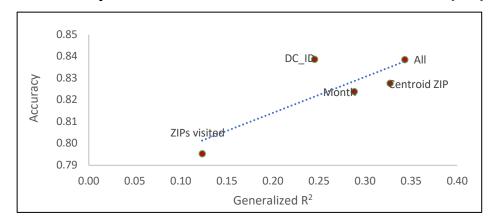
> Random Forest has higher Sensitivity but lower Specificity

Predicted

а

C

1

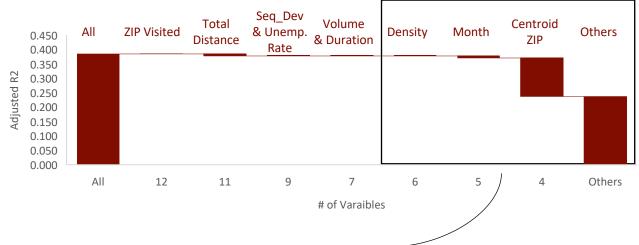

0

Actual

0 b

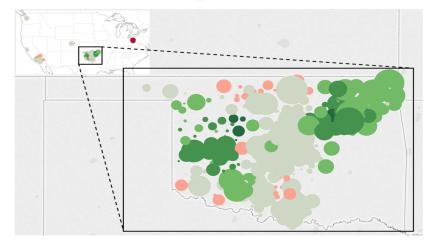
d

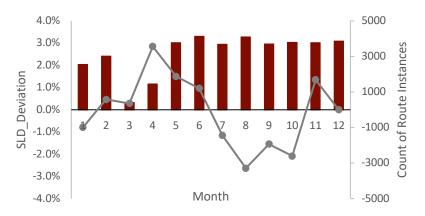
Accuracy vs Generalized R2 for Neural Network (US)


Specificity vs Sensitivity for Neural Network (US)

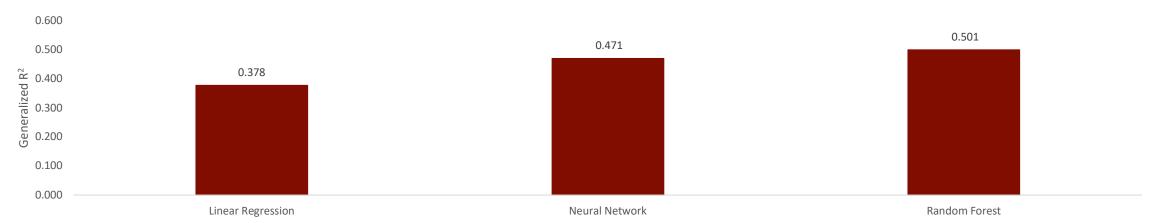
Accuracy =
$$\frac{a+d}{a+b+c+d}$$
, Sensitivity = $\frac{a}{a+b}$, Specificity = $\frac{a}{a+c}$

Results – SLD_Deviation by Regression Analysis


- > Iterative Process of selecting significant variables
- > Performance measured by Adjusted R²


> Sensitivity Analysis

Variables	Adjusted R ²	Difference
Planned_SLD	0.220	-41.8%
Centroid ZIP	0.250	-33.9%
Route_ID	0.294	-22.2%
Number_Customers	0.367	-2.9%
Month	0.370	-2.1%
Area_Rectangular	0.370	-2.1%
All Included	0.378	0.0%


Centroid ZIP vs SLD_Deviation

Seasonality of SLD_Deviation

Results – SLD_Deviation by Classification Methods

> Significantly Higher Generalized R² than Linear Regression

- > Classification method, more variables ≠ better R²
- > Centroid ZIP and Route_ID are among the very significant variables in the linear regression but are the least significant in the neural network

Variables	Adjusted R ²	Difference
Planned_SLD	0.220	-41.8%
Centroid ZIP	0.250	-33.9%
Route_ID	0.294	-22.2%
Number_Customers	0.367	-2.9%
Month	0.370	-2.1%
Area_Rectangular	0.370	-2.1%
All Included	0.378	0.0%

Variables	Generalized R ²	Difference
Planned_SLD	0.231	-50.8%
Area_Rectangular	0.356	-24.3%
Month	0.435	-7.7%
Number_Customers	0.436	-7.3%
Route_ID	0.478	1.5%
Centroid ZIP	0.478	1.6%
All Included	0.471	0.0%

Variables	Generalized R ²	Difference
Route_ID	0.449	-10.3%
Centroid ZIP	0.453	-9.6%
Area_Rectangular	0.490	-2.2%
Planned_SLD	0.501	0.0%
Month	0.535	6.9%
Number_Customers	0.536	7.0%
All Included	0.501	0.0%

Conclusion

> Using environmental variables that describe the route, drivers' decision to deviate from the plan can be predicted with an accuracy of **84% in the US and 71% in Mexico**.

> The impact on distance of the deviations can be predicted with a coefficient of determination **R² of 0.54**.

> Drivers are more likely to deviate and increase the route's distance when more customers are visited.

> Customers' geographical locations, reflected in the ZIP codes and group of customers, are useful to predict deviations.