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CONCLUSIONS So what...
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INTRODUCTION

in US only

such us:

— Time windows (implicit or explicit)

— Congestion patterns

it forfeits the investment

asking the driver through data

1 mile of reduction in average route distance results in $50M of annual cost savings for UPS
Urbanization and new costumers demands are making last-mile delivery optimization

increasingly complex and relevant to retail companies

Lacking tools and/or capabilities to include costumer specific or environmental constrains

Even for companies wiling to make capital investment, if the driver failed to follow the plan

Drivers stated preference is studied but not revealed preference, so this project is actually
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Figure 2: Actual Route
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DATA

> Data Description:

— Information about the route instances

— Information about the stops

> Measuring deviation:
— Deviation

— Sequence Deviation = Arcs not followed by driver / Total Arcs
— Distance Deviation = Actual Distance / Planned Distance — 1
— SLD Deviation = Actual Sequence SLD* / Planned Sequence SLD — 1

* SLD: Straight Line Distance

Planned Route
1 2

DC 3
5 4
Actual Route
1 2
DC 3

Example:

Deviation=1

Sequence Deviation = 3/5

Distance Deviation =15/11-1 = 36.4%
SLD Deviation=7/6-1=16.7%

Figure 1: Planned Route
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Figure 2: Actual Route
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METHODOLOGY
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Prediction and Classification Tools — Performance Metrics

Regression Neural Network & Random Forests
> Continuous Variable Adjusted R? > Both Variables Generalized R?2
> Bi Variable Confusion Matri
> Binary Variable Generalized R? nary . I ! "
— Specificity
— Sensitivity
— Accuracy

> Fixed 70% Validation Set and 30% Training Set




METHODOLOGY

Mexico US All

Route Instances 7,644 47,881 55,525
Number of DCs 9 9 18
Stops per Route 17.9 12.8 13.5
Route Distance (km) 73.0 106.9 102.2
Deviation 45.8% 79.8% 75.1%
Sequence Deviation* 61.8% 54.7% 55.3%
SLD Deviation™ 12.1% 1.7% 2.6%

* Only considering deviated routes
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US valid data size is 6X the Mexico data size

US deviated routes deviate more

US routes’ deviation impact on SLD is lower

Significant difference in deviation between countries



Results — Deviation by Regression Analysis

> Iterative Process of selecting significant variables
> Performance measured by Generalized R?

Generalized R?
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Deviation vs ZIPs visited, by DC
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Sensitivity Analysis

Difference
ZIPs visited 0.167 0.091
Centroid ZIP 0.188 0.070
Month 0.244 0.014
DC_ID 0.253 0.005
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Results — Deviation by Classification Methods

> Significantly Higher Generalized R? than logistic Regression Accuracy vs Generalized R2 for Neural Network (US)
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> Random Forest has higher Sensitivity but lower Specificity Specificity vs Sensitivity for Neural Network (US)
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Results — SLD Deviation by Regression Analysis

> Iterative Process of selecting significant variables

> Performance measured by Adjusted R?
Seq_Dev
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> Sensitivity Analysis Seasonality of SLD_Deviation

Count of Route Instances
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Results — SLD_Deviation by Classification Methods

> Significantly Higher Generalized R2than Linear Regression
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> Classification method, more variables # better R?
> Centroid ZIP and Route_ID are among the very significant variables in the linear regression but are the least significant in the
neural network

Variables Adjusted R2  Difference Variables Generalized R?> Difference Variables Generalized R? Difference

Planned SLD 0.220 -41.8% Planned_SLD 0.231 -50.8% Route_ID 0.449 -10.3%
Centroid ZIP 0.250 -33.9% Area_Rectangular 0.356 -24.3% Centroid ZIP 0.453 -9.6%
Route_ID 0.294 -22.2% Month 0.435 -7.7% Area_Rectangular 0.490 -2.2%
Number_Customers 0.367 -2.9% Number_Customers 0.436 -7.3% Planned_SLD 0.501 0.0%
Month 0.370 -2.1% Route_ID 0.478 1.5% Month 0.535 6.9%
Area_Rectangular 0.370 -2.1% Centroid ZIP 0.478 1.6% Number_Customers 0.536 7.0%
All Included 0.378 0.0% All Included 0.471 0.0% All Included 0.501 0.0%




Conclusion

> Using environmental variables that describe the route, drivers’ decision to deviate from the plan can be
predicted with an accuracy of 84% in the US and 71% in Mexico.

> The impact on distance of the deviations can be predicted with a coefficient of determination R? of 0.54.

> Drivers are more likely to deviate and increase the route’s distance when more customers are visited.

> Customers’ geographical locations, reflected in the ZIP codes and group of customers, are useful to
predict deviations.



