Supply Chain Network Optimization for International Commodity Trading

Sebastian Abt – German Tisera

Advisor: Dr. Josué C. Velázquez-Martinez

May-2018

About the authors

Prior to MIT, Sebastian Abt worked in several supply chain related positions at Jungbunzlauer International, one of the world's leading producers of biodegradable ingredients of natural origin. He received his Bachelor of Science in Business Administration his and Master of Arts in Asian Studies from the University of Geneva.

Prior to MIT, German Tisera worked in financial audit and advisory at KPMG and in supply chain operational audit at LafargeHolcim, leading global construction materials company. He received his Bachelor of Science in Accounting and his Master of Business Administration. from Universidad Nacional de Cordoba.

Agenda

- Introduction
- Methodology
- Results
- Q&A

Python-Gurobi routes margin products model supply contribution customers demand transportation optimization vessels network incoterm

Cement types and raw material origin

Abt - Tisera 2018

Slag in the cement industry

- Economical advantages
- Environmental advantages
- ✓ Resource preservation
- **x** Increasing demand
- **x** Limited availability
- **x** Distance between sources and destinations

- The company deals only with seaborne import and export operations of cementitious materials, gypsum, solid fuels and other dry bulk goods, through a diverse network of bulk vessels
- Present in 120 countries; trading 30 million tons of cement, clinker, slag and other bulk materials (2016)
- Main sources of slag are in Asia, being Japan the most relevant one

Slag supply chain network

 Are there opportunities to improve the current supply chain network delivering higher margins, cost efficiencies, while creating additional value to customers?

Agenda

- Introduction
- Methodology
- Results
- Q&A

Methodology

Model formulation

OBJECTIVE to maximize the sum of contribution margins (ω) across the supply chain **HOW**? Using a Mixed Integer Linear Program (MILP)

- Supply nodes \rightarrow 64
- Demand nodes \rightarrow 47
- Products \rightarrow 9
- Incoterms $\rightarrow 2$

- Revenue (Pricing policy)
- Purchase cost
- Logistic costs
- Import costs (duties/tariffs)

Subject to:

- **Supply constraints:** maximum and minimum supply available at different supply nodes
- **Total demand constraints:** maximum and minimum total demand for a customer, without considering product quality
- Specific demand constraints: maximum and minimum specific demand for a specific product quality
- Ship constraints: maximum shipment capacity and the minimum shipment load linked to a type of vessel; ensuring the model only allocates complete vessels

Model developed with...

Programming language

• Algorithm for optimization

pandas $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$ Interface Excel > Python

Agenda

- Introduction
- Methodology
- Results
- Q&A

Scenario analysis

- Baseline 2017
- [SC02]: Model validation
- [SC03]: New routes
- [SC04]: New routes + customer pricing
- [SC05]: CO₂ benefits
- [SC06]: Increased import duties
- [SC07]: Increased freight rates
- [SC08]: Reduction in supply

Current network optimization

Political impact

Risk mitigation

[SC02]: Model validation

- Elimination of routes with negative margins.
- Release of volumes allocated to negative and low margin customers, and reallocation to customers with higher margins (CIF customers).
- The model reduces the contribution margin by \$ 296,000 for FOB customers but increases the contribution margin by \$ 2.15 million for CIF customers.
- Allocation of routes in the Baseline are not far from the ones allocated by the model.

[SC03]: New routes

- From a total of 106 new routes, the optimal solution uses only 11, the most relevant being:
 - Brazil to Ivory Coast / Ghana
 - France to Croatia
 - Japan (Chiba) to Vietnam
- The solution provided by the model changes significantly.
- Total contribution increases, as new routes provide a better solution in terms of margin optimization.

[SC05]: CO₂ benefits

- Scenario includes future CO₂ tax savings (based on Border Carbon Adjustment)
- Only physical difference: allocation of increased quantity to UK and Sweden (approx. 4,500 tons)
- Carbon taxes have a very limited effect on the optimal allocation of flows

[SC07]: Increased freight rates

- Transport costs increased by 20% from the baseline.
- Total contribution margin drops by \$ 8.9 million (-48% vs SC02) when transport prices increase by 20%.
- The model leaves demand unattended for those customers which are far from the supply nodes:
 - Peru
 - United Arab Emirates
 - Ivory Coast
 - Ghana
- The number of profitable routes in the network reduces significantly.

[SC08]: Reduction in supply

- 50% availability for the main supplier (Japan).
- Customers with low margin are not sourced: (less volume traded).
 - Philippines
 - Peru
 - Vietnam
 - Egypt
 - United Arab Emirates
- The model has enough flexibility to reallocate the volumes available in the nodes to the most profitable customers, thus restricting the supply to those customers with margins below the average.

Key takeaways

- Optimization of the current network already yields a high return, while being robust against future developments
- Pricing strategy, transportation cost, and supply/demand changes have an important impact on profitability and supply chain design, while CO₂ taxes and duties have a rather limited impact
- It is important to hedge against transport and supply/demand uncertainty by engaging in long-term contracts with strategic customers and transportation providers
- The model is a decision support tool; management needs to decide the final allocation of volumes

Agenda

- Introduction
- Methodology
- Results
- Q&A

Thanks...

Abt - Tisera 2018

Backup slides

Slag production process

Objective function:

Subject to:

$$\sum_{g=1}^{n} \sum_{j=1}^{p} x_{ghij} \le S_{hi} \forall h, i \in S$$
 (maximum supply constraint)

$$\sum_{g=1}^{n} \sum_{j=1}^{p} x_{ghij} \ge W_{hi} \forall h, i \in \mathbb{W}$$

(minimum required supply constraint)

$$\sum_{h=1}^{m} \sum_{i=1}^{o} x_{ghij} \le D_{gj} \forall g, j \in \mathbf{D}$$

(maximum total demand constraint)

$$\sum_{h=1}^{m} \sum_{i=1}^{o} x_{ghij} \ge E_{gj} \forall g, j \in E$$
 (minimum total demand constraints)

Subject to (cont.):

$$\sum_{g=1}^{n} \sum_{i=1}^{o} x_{ghij} \le F_{hj} \forall h, j \in \mathbf{F}$$
$$\sum_{g=1}^{n} \sum_{i=1}^{o} x_{ghij} \ge G_{hj} \forall h, j \in \mathbf{G}$$

(maximum specific demand constraint)

(minimum specific demand constraint)

$$\sum_{h=1}^{m} x_{ghij} \le y_{gij} U_{gij} \forall g, i, j \in U$$
 (maximum capacity per ship constraint)

$$\sum_{h=1}^{m} x_{ghij} \ge y_{gij} \ \beta \ U_{gij} \ \forall \ g, i, j \in U \qquad (\text{minimum capacity per ship constraint})$$

 $\forall x_{ghij} \exists T$ (use of available routes constraint)

 $x_{ghij} \ge 0 \in R$ (non-negativity constraint and real number)

 $y_{gij} \ge 0 \in Z$ (non-negativity constraint and integer number)

Abt - Tisera 2018

[SC04] – 4.3.2. New routes and value-based pricing

	Baseline* (2017)	[SC03]	[SC04]	[SC04] Difference (ABS) [SC03] vs [SC04]		Difference (ABS) Base vs [SC4]	(%)
Volume traded (tons)	5,607,137	5,274,900	4,999,800	(275,100)	5%	(607,337)	-11%
Cont. margin (USD)	17,197,480	21,810,012	24,693,287	2,883,275	13%	7,495,807	44%
FOB							
Volume traded (tons)	904,817	772,100	739,100	(33,000)	-4%	(165,717)	-18%
Cont. margin (USD)	856,450	952,298	787,298	(165,000)	-17%	(69,152)	-8%
CIF							
Volume traded (tons)	4,702,320	4,502,800	4,260,700	(242,100)	-5%	(441,620)	-9%
Cont. margin (USD)	16,341,030	20,857,714	23,905,989	3,048,275	15%	7,564,959	46%
Route match rate	68%						
Mean of differences	15,609						
SD of differences	77,344						

CO₂ emission benefits

Country	Country /	European	ETS	CO2 Tax	Chosen value	CO2e region	savings	Savings
	Region	Union	(USD/tCO2e)	(USD/tCO2e)	(USD/tCO2e)	-	without BCA	with BCA
Austria	Austria	EU	5		5	Europe	3	1
Belgium	Belgium	EU	5		5	Europe	3	1
Bulgaria	Bulgaria	EU	5	45	5	Europe	3	1
Canada	Alberta		23	15	23	North America***	21	4
Canada	Ontesie		14	23	23	North America***	21	4
Canada	Ontario		14		14	North America***	13	3
Chile	Chile		14	-	14	South America	13	1
China	Roiiing			5	5	China	5	1
China	Chongging		1		1	China	1	<u> </u>
China	Fuiian		- 5		5	China	3	1
China	Guanadona		2		2	China	1	0
China	Hubei		2		2	China	1	0
China	Shanghai		6		6	China	4	1
China	Shenzhen		5		5	China	3	1
China	Tianjin		2		2	China	1	0
Colombia	Colombia			5	5	South America*	3	1
Croatia	Croatia	EU	5		5	Europe	3	1
Cyprus	Cyprus	EU	5		5	Europe	3	1
Czech Republic	Czech Republic	EU	5		5	Europe	3	1
Denmark	Denmark	EU	5	25	25	Europe	17	3
Estonia	Estonia	EU	5	2	5	Europe	3	1
Finland	Finland	EU	5	66	66	Europe	45	9
France	France	EU	5	33	33	Europe	23	5
Germany	Germany	EU	5		5	Europe	3	1
Greece	Greece	EU	5		5	Europe	3	1
Hungary	Hungary	EU	5		5	Europe	3	1
Iceland	Iceland			11	11	Europe	8	2
Ireland	Ireland	EU	5	21	21	Europe	14	3
Italy	Italy	EU	5		5	Europe	3	1
Japan	Japan			3	3	Japan, Australia, NZ	2	0
Japan	Saitama		13		13	Japan, Australia, NZ	10	2
Latvia	Latvia	EU	5	5	5	Europe	3	1
Liechtenstein	Liechtenstein		-	84	84	Europe	58	12
Litnuania	Litnuania	EU	5		5	Europe	3	1
Luxembourg	Luxembourg	EU	5		5	Europe	3	1
Moxico	Movico	EU	5	2	2	Control Amorica*	3	1
Nothorlands	Nethorlanda	E11	1	5	5	Europo	2	1
New Zealand	New Zealand	LU	12		12	lanan Australia NZ	9	2
Norway	Norway		3	52	52	Furone	36	7
Poland	Poland	FU	5	1	5	Europe	3	1
Portugal	Portugal	FU	5	7	7	Europe	5	1
Romania	Romania	EU	5		5	Europe	3	1
Slovakia	Slovakia	EU	5		5	Europe	3	1
Slovenia	Slovenia	EU	5	18	18	Europe	12	2
South Korea	South Korea		18		18	Asia**	14	3
Spain	Spain	EU	5		5	Europe	3	1
Sweden	Sweden	EU	5	126	126	Europe	87	17
Switzerland	Switzerland		6	84	84	Europe	58	12
United Kingdom	United Kingdom	EU		22	22	Europe	15	3
Ukraine	Ukraine			1	1	Europe	1	0
USA	California		14		14	North America***	13	3
USA	Connecticut		3		3	North America***	3	1
USA	Delaware		3		3	North America***	3	1
USA	Maine		3		3	North America***	3	1
USA	Maryland		3		3	North America***	3	1
USA	Massachusetts		3		3	North America***	3	1
USA	New Hampshire		3		3	North America***	3	1
USA	New York		3		3	North America***	3	1
USA	Rhode Island		3		3	North America***	3	1
USA	vermont		3		3	North America***	3	1

[SC06] – increased Duties

Countries / Regions	Current duties	New duties	Remarks	
Brazil	4%	8%	BRIC - increased threat to USA	
South Korea	2%	4%	Assumed general "low" duties for geopolitical partnership	
China	0%	15%	Economic rival	
India	0%	8%	BRIC - increased threat to USA	
Rest Asia	0%	4%	Assumed general "low" duties for geopolitical partnership	
Middle East & Turkey	0%	4%	Assumed general "low" duties for geopolitical partnership	

	Baseline* (2017)	[SC06]	Difference (ABS)	Difference (%)
Volume traded (tons)	5,607,137	5,512,460	(94,677)	-2%
Contribution margin (USD)	16,751,680	18,606,693	1,855,013	11%
FOB				
Volume traded (tons)	904,817	873,440	(31,377)	-3%
Contribution margin (USD)	856,449	559,955	(296,495)	-35%
CIF				
Volume traded (tons)	4,702,320	4,639,020	(63,300)	-1%
Contribution margin (USD)	15,895,230	18,046,737	2,151,507	14%
Route match rate	77%			
Mean of differences	937			
SD of differences	59,513			

*Baseline quantities using margins from [SC06] for comparability.

Summary of scenarios

