Forecasting short term trucking rates

Xiwen Bai

Advised by Dr. Chris Caplice

22 May 2018

Introduction

MOTIVATION

Transportation	Trucking	Forecasting
\$1.5 trillion spent in 2015 on logistics and transportation	Lifeblood of the US economy	Transportation budget planning
8% of US GDP		Economics order quantity
Up to 50% of total logistics costs are transportation cost	Earned \$726.4 billion revenue in 2015	Inventory replenishment
Emphasize on lean production and inventory minimization	Represents 81.5% of US freight transportation revenue	Facility location

Introduction

OBJECTIVE & SCOPE

> **Objective**:

 To develop a <u>forecasting model</u> that predicts both <u>contract and spot</u> rates for dry van on individual lanes for the next seven days

Scope:

• One high-volume truckload (TL) lane as a sample lane for forecasts

Contract vs Spot market:

- Contract: stability for shippers, less flexibility
- Spot: more flexibility, higher rate volatility

Trends in truck rate forecasting research

Methodology evolvement

Research Gaps

- > Most studies using linear regression methods
- > Spot market rates have been less studied
- No study considering <u>interactions</u> between <u>spot and contract rates</u>, <u>between rates for a</u> <u>particular lane and its adjacent routes</u>, or <u>between rates and volumes</u>.

- NAR: Nonlinear autoregressive (NAR)
- NARX: Nonlinear autoregressive with eXogenous inputs

Time Series Models

 ARIMA: Autoregressive integrated moving average

Model update

	1:312 (Training & Validation)
Scenario 1: No model update	
	313:319 320:326 (Input) (Output)
	8:319 (Training & Validation)
e	
Update using rolling	
window data	313:319 320:326 (Input) (Output)
	1:319 (Training & Validation)
Scenario 3: Update using	·
cumulative data	313:319 320:326 (Input) (Output)

• When to update model with new information

FORECASTING MODELS: NEURAL NETWORK & ARIMA

Model Structure

> NAR & NARX models

Hybrid of neural network and time series models

 $y(t+1) = f[y(t), \dots y(t-d_y+1); u(t), u(t-1), \dots u(t-d_u+1)]$

u(t) is exogenous input; dy and du are memory delays

ARIMA model

$$Y_{t} = \phi_{0} + \phi_{1}Y_{t-1} + \dots + \phi_{p}Y_{t-p} + a_{t} + \theta_{1}a_{t-1} + \dots + \theta_{q}a_{t-q}$$

Neural Network Advantage

- Ability to find complex and nonlinear associations between the parameters
- > Higher tolerance for errors, robust to noise
- Less concerned with multicollinearity issue
- > No need for error distribution assumption

MIT Center for

MODEL UPDATE WITH NEW INFORMATION

8

DATA

- Georgia Central (GA_C) to Florida
 Central (FL_C) daily spot and contract
 cost per mile over a one-year period (1
 Apr 2016 to 31 Mar 2017);
- Training: Validation: Test set = 70:15:15

INPUT DECISION VARIABLES ANALYSIS

Autocorrelation and cross-correlations between GA_C to FL_C **contract rates** and other variables

Number of lags	[Contract, Contract]	[Contract, Spot]	[Contract, Contract GA_C FL_N]	[Contract, Contract GA_C FL_S]	Contract, Contract GA_C SC_C]	[Contract, Volume]
0	1	0.25	0.05	0.5	0.08	-0.41
1	0.38	0.11	-0.11	0.23	0.12	-0.03
2	0.22	0.1	-0.05	0.16	0.13	0.23
3	0.04	0.13	-0.07	0.13	0.03	0.33
4	0.01	0.17	0.03	0.1	0.16	0.15
5	0.12	0.19	0.12	0.22	0.08	-0.05
6	0.21	0.16	0.02	0.26	0.07	-0.32
7	0.42	0.14	0.05	0.4	0.06	-0.34

Autocorrelation and cross-correlations between GA_C to FL_C **spot rates** and other variables

Number of lags	[Spot, Spot]	[Spot <i>,</i> Contract]	[Spot <i>,</i> Volume]
0	1	0.25	-0.18
1	0.3	0.21	-0.09
2	0.28	0.23	-0.01
3	0.3	0.11	0.04
4	0.23	0.13	0.02
5	0.27	0.06	0.05
6	0.26	0.12	-0.08
7	0.23	0.14	-0.16

NAR RESULTS FOR SPOT RATES

MSE for the validation set with different numbers of hidden nodes (Nh) (dy=7)

NAR model results for spot rates with different feedback delays (dy)

Feedback delays ($d_{ m _{V}}$)	Hidden nodes (N_h)	MSE for validation set
7	4	0.494
8	2	0.507
9	5	0.543
10	2	0.527
11	3	0.526
12	4	0.539
13	2	0.558
14	2	0.544

The same model for each *du* and *Nh* is run 10 times to get stable results. MSEs are the average values of 10 runs.

NARX RESULTS FOR SPOT RATES WITH CONTRACT RATES AS INPUTS

Input delays (d_u)	Hidden nodes (N_h)	MSE for validation set
1	6	0.544
2	5	0.513
3	4	0.511
4	2	0.552
5	3	0.501
6	2	0.530
7	2	0.559

Note: dy=7. The same model for each du and Nh is run 10 times to get stable results. MSEs are the average values of 10 runs.

MODEL UPDATE WITH NEW INFORMATION FOR SPOT RATES

- Updated models do not perform better than the original model in most cases.
- Reason: parameters (numbers of hidden nodes and feedback delays) trained in the original model not stable due to high level of volatility and noise in the original data

MSE reductions by updating models with new information for spot rates

NAR AND NARX RESULTS FOR CONTRACT RATES

Input variables	Input delay (d_u)	Hidden nodes (N _h)	MSE for validation set
CR	7	3	0.00239
CR, SR	7	3	0.00235
CR, GA_C FL_S	7	1	0.00205
CR, Volume	7	2	0.00192
CR, SR, GA_C FL_S	7	2	0.00226
CR, SR, Volume	7	1	0.00210
CR, GA_C FL_S, Volume	7	4	0.00211
CR, SR, GA_C FL_S, Volume	7	1	0.00200

Note: Feedback delay (dy) is set to 7 for all cases. **CR** stands for spot rates, **SR** for spot rates, GA_C|FL_S for contract rates on GA_C|FL_S. The same model for each du and Nh is run 10 times to get stable results. MSEs are the averaged values of 10 runs.

MODEL UPDATE WITH NEW INFORMATION FOR CONTRACT RATES

- Updated model performs better than the original model from 3-period ahead onwards
- Rolling window model performs better than the cumulative model

RMSE COMPARISON BETWEEN NAR(X) AND ARIMA

Rate type	Model type	Best model	RMSE for 7 days (rolling forecast)
	NAR(X)	NAR with d_y =7	0.56511
Spot	ARIMA	ARIMA (6,0,2)	0.60167
	% Difference		-6%
	NAR(X)	NARX with d_y =7, d_u =7	0.03286
Contract	ARIMA	ARIMA (7,0,1)	0.03082
	% Difference		7%

Note: % Difference is calculated as (RMSENAR(X)- RMSEARIMA)/RMSEARIMA, as a way to measure relative performance of two types of models.

Conclusion

KEY FINDINGS

Spot rate: Additional information, such as past values of contract rates **Model update with new information** does not improve forecasting accuracy

Contract rate: Adding **volume, rates on adjacent routes**, **retraining of the model** increases the model's performance

Much higher accuracy and less forecasting variability for contract than spot rates

No short-term information transmission between spot and contract rates

Conclusion

CONTRIBUTION

Aid supply chain decision making

- Transportation budget planning
- Economics order quantity
- Vehicle routing
- Facility location

2 Forecasting guideline for practitioners

- how to select input variables
- what model to use
- when to update model with new information
- what forecasting error expected from model

Thank You!

