Lean Services: Creating JIT Services Through Customer Input

Michael Alexander Chee-Awai

& Joel Semel

Advisor: Dr. Eva Ponce

May 22, 2018

Outline

- Introduction
 - Supply Chain Process
 - The Problem
- Research Question
- Methodology
 - Data Collection
 - Cluster Analysis
 - Project Evaluation & Review Techniques
 - Monte Carlo Simulations
- Results
- Conclusions
- Next Steps
- Questions

The Supply Chain

Introduction

Research

Question

- Chemical Manufacturers require their products to pass regulatory testing prior to sale.
- Manufacturers ship samples of a product batch to Testing Laboratories with an attached purchase order.
- Laboratories receive samples, enter PO on sample log, test samples, and send a report.

Issues in the Supply Chain

- Customer experiences long lead times
- Laboratory demand planning is challenging, wasteful, and inefficient
- Minimal coordination between lab & customer

Research Question

Can service lead times be reduced by following a <u>concurrent strategy</u> where the service provider starts the process at the same time the customer sends the purchase order and sample? Introduction

Research Question

Methodology

Results

Conclusion

Methodology

Data Collection	Sources of DataCharacteristics of Sa	imples			Introduction
& Pre-Analysis	Survey DesignDescription of KPIs				Research Question
	Clustering	Clustering TechniquClustering Analysis	es		Methodology
					Results
		Project Evaluation & Review Techniques	 Expert estimations of Networks of historic each sample 	of activity durations al test methods on	Conclusion
					Next Steps
			Monte Carlo Simulations	DesignAnalysis	MIT Supply Chain

MANAGEMENT

Data Collection

Test Cycle Time

Representative Lead Times

Introduction

MIT Supply Chain

MANAGEMENT

9

Process Complexity

Cluster Analysis

Introduction

Research Question

Methodology

Results

Conclusion

	Cluster Type	Test Types
CLUSTER 1	Turbine Oil Tests	22
CLUSTER 2	Petroleum and Synthetic Oil Tests	22
CLUSTER 3	Grease Tests	13
CLUSTER 4	Hydrocarbon Solvent Tests	7
CLUSTER 5	Extreme Environment Grease Tests	2
CLUSTER 6	Historically Run Once as Only Test on a Sample	1
		67

Cluster Analysis

MANAGEMENT

Scenarios

Introduction

Research

Question

Methodology

Results

Conclusion

- Samples and Purchase Orders arrive simultaneously, without prior warning.
- Demand for testing arrives in surges, causing high capacity utilization, backlogged tests, longer lead times, and higher rates of human error.
- Manufacturers could send Purchase Orders ahead of time to allow for set up time, but they do not.

Scenarios

$\sim \sim 1$		
U UU		
	uu	ouucu

			Research	
Concurrent Process Step Scenarios				
Scenario	Processes Steps Performed After Sample Arrival	Process Steps Performed During Sample Transit Time		
Scenario 1	Dependent Process Steps	Independent Process Steps		
Scenario 2	Independent and Dependent Process Steps	None	Methodolog	
Scenario 3	Dependent Process Steps	Independent Process Steps and Calibration Steps		
Scenario 4	Independent, Dependent, and Calibration Process Steps	None		

Results

Conclusion

MIT Supply

hain

17

Monte Carlo Simulations

Introduction

Results

Scenario (2000 Runs)	Samples (number of samples in run)	Average Days Reduced Lead Time	Average Percent Reduced Lead	Average Percent of Reduced Lead Time	Average P- Value Two- Sided Paired T- Test TCT	Number of Runs with Paired T- Test P- Value Lass
		(uays)	1 me	Tests Longer than Critical	Reduced and Normal (p-value)	value Less Than 0.05 (p-value < 0.05)
	Cluster 3					
Scenario 1 and 2	119	0.26	14%	27%	0.39	130/2000
Scenario 3 and 4	119	1.43	26%	19%	0.37	270/2000
	Customer 7					
Scenario 1 and 2	29	0.41	18%	25%	0.34	260/2000
Scenario 3 and 4	29	0.52	23%	23%	0.24	590/2000
	ASTM D2509					
Scenario 1 and 2	14	0.32	36%	5%	0.15	1350/2000
Scenario 3 and 4	14	0.52	50%	0.04%	2.14E-05	2000/2000

Results

<u>Collabora</u>	Introduction			
High	Yes	Yes		Research Question
Proportion of Lead Time Coming from Independent				Methodology
Process Time within Service (%) Low	Yes, if high demand volume and non- negligible	No		Results
	independent process time.			Conclusion
	Low	High		Next Steps
Duration of Dependent Process Time within Service (Days)				

MIT Supply Chain

Conclusion

 Large proportions of independent process time have greater potential for lead time reduction

- Collaborating with specific customers that meet the criteria of our first finding will yield the most effective results
- Customers must be responsive enough to engage in the behavior

 If independent process time and dependent process time are low, then benefits will only be noticed if there is a large volume of demand

Next Steps

- <u>Just-in-time consumables</u>: Can laboratories drastically reduce inventory on hand by utilizing better information?
- <u>Labor Efficiency</u>: Can labor be scheduled more efficiently to better accommodate arrival of test samples?

• <u>Machine Learning for Predicting Lead Times</u>: Can the prediction of lead times improve using machine learning?

Introduction Research Question Methodology Results Conclusion

THANK YOU & QUESTIONS

